Skip to main content
Log in

Thermomechanical Properties of Nanocomposites and Their Vulcanizates Based on Low-Density Polyethylene Filled with Thermal Ash

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The paper presents the results of a study of the effect of temperature and concentration of thermal ash nanoparticles 10–40 wt % on the regularity of changes in thermomechanical curves measured with a Kanavets apparatus. The influence of the concentration of the crosslinking agent dicumyl peroxide on the first-order phase transition and the temperature range of the hyperelastic and viscous-flow states has been studied. It is shown that with the introduction of 0.5 wt % of dicumyl peroxide, all three physical states are preserved in the polymer: solid, hyperelastic, and viscous-flow. With an increase in the concentration of dicumyl peroxide to 1.0–2.0 wt %, the crosslinked samples pass into a glassy state after the softening temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Polimernye kompozitsionnye materialy. Svoistva. Struktura. Tehnologii (Polymer Composite Materials: Properties, Structure, and Technology), Berlin, A.A., Ed., St. Petersburg: Professiya, 2009.

    Google Scholar 

  2. Ermakov, S.N., Kerber, M.L., and Kravchenko, T.P., Chemical modification and mixing of polymers during reaction extrusion, Plast. Massy, 2007, no. 10, pp. 32–41.

  3. Ol’khov, A.A., Rumyantsev, B.M., Gol’shtrakh, M.A., et al., Structural parameters of a polymer composite material based on polyethylene and nanocrystalline silicon, Plast. Massy, 2013, no. 10, pp. 6–8.

  4. Ashurov, N.R., Dolgov, V.V., Sadykov, Sh.G., and Usmanova, M.M., Nanokompozity. Polimery etilena, napolnennye sloistymi alyumosilikatami (Nanocomposites. Ethylene Polymers Filled with Layered Aluminosilicates), Tashkent: Fan, 2016.

  5. Aloev, V.Z., Zhirikova, Z.M., and Tarchokova, M.A., Effectiveness of use of nanofillers of different types in polymeric composites, Izv. Vyssh. Uchebn. Zaved., K-him. Khim. Tekhnol., 2020, vol. 63, no. 4, pp. 81–85. https://doi.org/10.6060/ivkkt.20206304.6158

    Article  CAS  Google Scholar 

  6. Kakhramanov, N.T., Azizov, A.G., Osipchik, V.S., Mammadli, U.M., and Arzumanova, N.B., Nanostructured composites and polymer materials, Int. Polym. Sci. Technol., 2017, vol. 44, no. 2, pp. 37–47.

    Article  Google Scholar 

  7. Kakhramanov, N.T., Bayramova, I.V., and Pesetsky, S.S., Thermomechanical properties of nanocomposites based on clinoptilolite and a copolymer of ethylene with hexane, Inorg. Mater.: Appl. Res., 2020, vol. 11, pp. 1184–1190. https://doi.org/10.1134/S2075113320050135

    Article  Google Scholar 

  8. Spiridonov, A.M., Sokolova, M.D., and Okhlopkova, A.A., Polymer composite materials based on ultra high-molecular polyethylene filled with organic-modified zeolite, Vse Mater. Entsikl. Sprav., 2019, no. 8, pp. 7–11.

  9. Atlukhanova, L.B., Kozlov, G.V., and Dolbin, I.V., The correlation between the nanofiller structure and the properties of polymer nanocomposites: Fractal model, Inorg. Mater.: Appl. Res., 2020, vol. 11, pp. 188–191. https://doi.org/10.1134/S2075113320010049

    Article  Google Scholar 

  10. Kakhramanov, N.T. and Kurbanova, R.V., Thermomechanical properties of hybrid nanocomposites based on functionalized high density polyethylene and bentonite, Inorg. Mater.: Appl. Res., 2021, vol. 12, pp. 61–64. https://doi.org/10.1134/S2075113321010159

    Article  Google Scholar 

  11. Petryuk, I.P., Influence of the parameters dispersed structure on the content of the interfacial layer in filled polymers, Plast. Massy, 2014, nos. 5–6, pp. 7–9.

  12. Paramjit, S., Sohpal V.K., and Sharma, R.K., Study of thermo-mechanical properties of polypropylene and low density polyethylene composite material, Orient. J. Chem., 2016, vol. 32, no. 1, pp. 455–461.

    Article  CAS  Google Scholar 

  13. Kozlov, G.V. and Dolbin, I.V., Transfer of mechanical stress from polymer matrix to nanofiller in dispersion-filled nanocomposites, Inorg. Mater.: Appl. Res., 2019, vol. 10, pp. 226–230. https://doi.org/10.1134/S2075113319010167

    Article  Google Scholar 

  14. Kakhramanov, N.T., Gasanova, A.A., and Mamedli, U.M., Kinetics of crystallization of nanocomposites based on thermal ash of household wastes and high-density polyethylene, Vse Mater. Entsikl. Sprav., 2019, no. 10, pp. 14–20.

  15. Lyamkin, D.I., Krasnikov, S.V., Zhemerikin, A.N., et al., The influence of the crosslinking method on the chemical network stability of polyethylene cable insulation under thermomechanical action, Plast. Massy, 2012, no. 2, pp. 25–28. https://elibrary.ru/item.asp?id=17743229

  16. Ulitin, N.V., Deberdeev, T.R., and Deberdeev, R.Ya., Certain viscoelastic properties of densely crosslinked polymers: Theoretical calculation, Plast. Massy, 2012, no. 2, pp. 34–39. https://elibrary.ru/item.asp?id=17743232

  17. Kakhramanov, N.T., Allahverdiyeva, Kh.V., and Nurullayeva, D.R., On preparation of polymer composites with improved electrophysical and physical-mechanical properties, Chem. Probl., 2019, no. 1, pp. 26–41.

  18. Kalistratova, L.F. and Egorova, V.A., Ordering of the amorphous phase as one of the characteristics of supramolecular structure of amorphous-crystalline polymer, Inorg. Mater.: Appl. Res., 2019, vol. 10, pp. 933–938. https://doi.org/10.1134/S2075113319040208

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Kakhramanov.

Additional information

Translated by K. Aleksanyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakhramanov, N.T., Gasanova, A.A., Allahverdieva, K.V. et al. Thermomechanical Properties of Nanocomposites and Their Vulcanizates Based on Low-Density Polyethylene Filled with Thermal Ash. Inorg. Mater. Appl. Res. 13, 1038–1042 (2022). https://doi.org/10.1134/S2075113322040153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113322040153

Keywords:

Navigation