Skip to main content
Log in

Synthesis and Properties of Silicon Carbide Nanoparticles Obtained by the Laser Pyrolysis of a Mixture of Monosilane and Acetylene

  • COMPOSITE MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The conditions for the synthesis of silicon carbide nanoparticles in a SiH4/C2H2/Ar/He gas mixture using 10.6 μm CO2 laser radiation are determined. The laser synthesis of SiC samples observed with SiH4/C2H2 gas flow rate in the range of 1.6–3.2. The temperature in the reaction area was about 1400–1500°C. Silicon carbide nanoparticles ~6 nm diameter were obtained and their composition was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Matsunami, H., Current SiC technology for power electronic devices beyond Si, Microelectron. Eng., 2006, vol. 83, no. 1, pp. 2–4. https://doi.org/10.1016/j.mee.2005.10.012

    Article  CAS  Google Scholar 

  2. Awschalom, D.D., Bassett, L.C., Dzurak, A.S., Hu, E.L., and Petta, J.R., Quantum spintronics: Engineering and manipulating atom-like spins in semiconductors, Science, 2013, vol. 339, no. 6124, pp. 1174–1179. https://doi.org/10.1126/science.1231364

    Article  CAS  PubMed  Google Scholar 

  3. Fend, Z.C., SiC Power Materials: Devices and Applications, Berlin–Heidelberg: Springer, 2014.

  4. Lely, J.A. and Keram, B.D., Darstellung von Einkristallen von Silizium Karbide und Beherrschung von Art und Menge der eingebauten Verunreinigungen, Ber. Dtsch. Keram. Ges., 1955, vol. 32, no. 8, pp. 229–250.

    Google Scholar 

  5. Tairov, M.Yu. and Tsvetkov, V.F., Investigation of growth processes of ingots of silicon carbide single crystals, J. Cryst. Growth, 1978, vol. 43, pp. 209–212.https://doi.org/10.1016/0022-0248(78)90169-0

    Article  CAS  Google Scholar 

  6. Wellmann, P., Desperrier, P., Müller, R., Straubinger, T., Winnack, A., Baillet, F., Blanquet, E., Dedulle, J.M., and Pons, M., SiC single crystal growth by a modified physical vapor transport technique, J. Cryst. Growth, 2005, vol. 275, pp. e555–e560. https://doi.org/10.1016/j.jcrysgro.2004.11.070

    Article  CAS  Google Scholar 

  7. Chaussende, D., Baillet, F., Charpentier, L., Pernot, E., Pons, M., and Madar, R., Continuous feed physical vapor transport: Toward high purity and long boule growth of SiC, J. Electrochem. Soc., 2003, vol. 150, no. 10, pp. g653–g657.

    Article  CAS  Google Scholar 

  8. Rodeghiero, E.D., Moore, B.C., Wolkenberg, B.S., Wuthenow, M., Tse, O.K., and Giannelis, E.P., Sol–gel synthesis of ceramic matrix composites, Mater. Sci. Eng., A, 1998, vol. 24, pp. 11–21. https://doi.org/10.1016/S0921-5093(97)00821-6

    Article  Google Scholar 

  9. Laser Induced Chemical Processes, Steinfeld, J.I., Ed., New York: Plenum, 1981.

    Google Scholar 

  10. Martelli, S., Mancini, A., Giorgi, R., Alexandrescu, R., Cojocaru, S., Crunteanu, A., Voicu, I., Balu, M., and Morjan, I., Production of iron-oxide nanoparticles by laser-induced pyrolysis of gaseous precursors, Appl. Surf. Sci., 2000, vol. 154–155, pp. 353–359. https://doi.org/10.1016/S0169-4332(99)00385-2

  11. Dez, R., Ténégal, F., Reynaud, C., Mayne, M., Armand, X., and Herlin-Boime, N., Laser synthesis of silicon carbonitride nanopowders; structure and thermal stability, J. Eur. Ceram. Soc., 2002, vol. 22, no. 16, pp. 2969–2979. https://doi.org/10.1016/S0955-2219(02)00049-3

    Article  CAS  Google Scholar 

  12. Deutsch, T.F., Infrared laser photochemistry of silane, J. Chem. Phys., 1979, vol. 70, pp. 1187–1192. https://doi.org/10.1063/1.437598

    Article  CAS  Google Scholar 

  13. Stephenson, J.C., King, D.S., Goodman, M.F., and Stone, J., Experiment and theory for CO2 laser-induced CF2HCl decomposition rate dependence on pressure and intensity, J. Chem. Phys., 1979, vol. 70, pp. 4496–4508. https://doi.org/10.1063/1.437287

    Article  CAS  Google Scholar 

  14. Ambartzumian, R.V., Furzikov, N.P., Gorokhov, Yu.A., Letokhov, V.S., Makarov, G.N., and Puretzki, A.A., Selective dissociation of SF6 molecules in two-frequency infrared laser field, Opt. Commun., 1976, vol. 18, no. 4, pp. 517–521. https://doi.org/10.1016/0009-2614(77)80259-5

    Article  Google Scholar 

  15. Medvedev, E.S., Collisionless dissociation of SF6 in an intense IR field, Chem. Phys., 1979, vol. 41, pp. 103–111. https://doi.org/10.1016/0301-0104(79)80136-6

    Article  CAS  Google Scholar 

  16. El-Diasty, F., Simulation of CO2 laser pyrolysis during preparation of SiC nanopowders, Opt. Commun., 2004, vol. 241, nos. 1–3, pp. 121–135. https://doi.org/10.1016/j.optcom.2004.07.006

  17. Azcárate, M.L. and Quel, E.J., Fluence and wavelength dependence of the IRMPA and IRMPD of CDCl3 with a CO2 laser, Appl. Phys. B, 1988, vol. 47, pp. 223–228. https://doi.org/10.1007/BF00697340

    Article  Google Scholar 

  18. Cannon, W.R., Danforth, S.C., Flint, J.H., Haggerty, J.S., and Marra, R.A., Sinterable ceramic powders from laser-driven reactions: I, Process description and modeling, J. Am. Ceram. Soc., 1982, vol. 65, no. 7, pp. 324–330. https://doi.org/10.1111/j.1151-2916.1982.tb10464.x

    Article  CAS  Google Scholar 

  19. Stafast, H., Initial steps in the photochemical vapour deposition of amorphous silicon, Appl. Phys. A, 1988, vol. 45, pp. 93–102. https://doi.org/10.1007/BF02565194

    Article  Google Scholar 

  20. El-Diasty, F., Simulation of CO2 laser pyrolysis during preparation of SiC nanopowders, Opt. Commun., 2004, vol. 241, nos. 1–3, pp. 121–135. https://doi.org/10.1016/j.optcom.2004.07.006

  21. Nanostructured Silicon-Based Powders and Composites, Legrand, A.P. and Senemaud, C., Eds., London–New York: Taylor and Francis, 2003.

  22. Chaikov, L.L., Kovalenko, K.V., Krivokhizha, S.V., Kudryavtseva, A.D., Tareeva, M.V., Tcherniega, N.V., and Shevchenko, M.A., Structure of water microemulsion particles: Study by optical methods, Phys. Wave Phenom., 2019, vol. 27, no. 2, pp. 87–90. https://doi.org/10.3103/S1541308X1902002X

    Article  Google Scholar 

  23. Kirichenko, M.N., Chaikov, L.L., Shkirin, A.V., Krasovskii, V.I., Bulychev, N.A., Kazaryan, M.A., Krivokhizha, S.V., Milovich, F.O., and Chirikov, S.N., General features of size distributions and internal structure of particles in aqueous nanosuspensions, Phys. Wave Phenom., 2020, vol. 28, no. 2, pp. 140–144.https://doi.org/10.3103/S1541308X20020077

    Article  Google Scholar 

  24. Burkhanov, I.S., Chaikov, L.L., Korobov, D.Yu., Krivokhizha, S.V., Kudryavtseva, A.D., Savranskiy, V.V., Shevchuk, A.S., and Tcherniega, N.V., Effective acousto-optical interactions in suspensions of nanodiamond particles, J. Russ. Laser Res., 2012, vol. 33, no. 5, pp. 496–502. https://doi.org/10.1007/s10946-012-9307-6

    Article  CAS  Google Scholar 

  25. Roldughin, V.I., The characteristics of fractal disperse systems, Russ. Chem. Rev., 2003, vol. 72, no. 11, pp. 913–937. https://doi.org/10.1070/RC2003v072n11ABEH000829

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-0200786.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Krasovskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershov, I.A., Pustovoy, V.I., Krasovskii, V.I. et al. Synthesis and Properties of Silicon Carbide Nanoparticles Obtained by the Laser Pyrolysis of a Mixture of Monosilane and Acetylene. Inorg. Mater. Appl. Res. 13, 775–780 (2022). https://doi.org/10.1134/S207511332203011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207511332203011X

Keywords:

Navigation