Skip to main content
Log in

Poisson Ratio of TiNi

  • PHYSICOCHEMICAL FUNDAMENTALS OF CREATING MATERIALS AND TECHNOLOGIES
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

A review of the published data and methods for calculating the Poisson ratio of the TiNi intermetallic compound in the poly- and single-crystal state is performed. The results of our own research are also presented. Significant variability of the presented data is noted, which is due to differences in the thermomechanical processing of the alloys and the measurement and calculation methods used. By averaging the matrices of elastic constants and compliance coefficients using the Voigt, Reuss, and Hill approximations, we obtained the values of the parameters of the effective elastic properties of TiNi polycrystals and calculated the Poisson ratio. Using analytical expressions to calculate the values of the extreme values, the extrema of the Poisson ratio of cubic TiNi crystals are determined for standard orientations. On the basis of a number of data, TiNi crystals are auxetics (materials having negative Poisson ratio values); on the basis of other data, they are not. We found that TiNi crystals belong to the so-called partial auxetics; in this case, the signs of the inequalities (s12 < 0, s = s11 + s12s44/2 > 0 or s12 > 0, s = s11 + s12s44/2 < 0) are opposite. The values of the Poisson ratio TiNi averaged over the transverse directions of deformation are analyzed. Isosurfaces of the Poisson ratio and their sections are presented using the ELATE computer graphics package and the M-ATHCAD computer algebra program. Aspects of TiNi elastic anisotropy, its parameters, and their relationship to martensitic transformations in TiNi and alloys based on it are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Belomestnikh, V.N. and Tesleva, E.P., Poisson’s ratio and Gruneisen parameter of solids, Izv. Tomsk. Politekh. Univ., 2003, vol. 306, no. 5, pp. 8–12.

    Google Scholar 

  2. Kornilov, I.I., Belousov, O.K., and Kachur, E.V., Nikelid titana i drugie splavy s effektom pamyati (Titanium Nickelide and Other Memory-Effect Alloys), Moscow: Nauka, 1977.

  3. Polugrudova, L.S., Demina, M.Yu., and Andronov, I.N., Modeling of stresses and deformations during thermal cycling of coil springs with shape memory under the action of tensile forces, in Splavy s effektom pamyati formy: Svoistva, tekhnologii, perspektivy (Shape Memory Alloys: Properties, Technologies, Prospects), Vitebsk, 2014, pp. 95–97.

  4. Duerig, T.W. and Pelton, A.R., Ti–Ni shape memory alloys, in Materials Properties Handbook: Titanium Alloys, Materials Park, OH: ASM Int., 1994, pp. 1035–1048.

    Google Scholar 

  5. Belousov, O.K., Temperature dependence of physical properties and the relationship between the transformation into TiNi and the phase diagram, Metally, 1981, no. 2, pp. 240–241.

  6. Liang, Y., Taya, M., and Kuga, Y., Design of membrane actuators based on ferromagnetic shape memory alloy composite for the synthetic jet actuator, Proc. SPIE, 2004, vol. 5390, pp. 268–275. https://doi.org/10.1117/12.540100

    Article  Google Scholar 

  7. Mita, T., Kawashima, K., Misumi, M., and Ohkubo, M., Poisson’s ratio and Young’s modulus of TiNi shape memory alloy measured by electromagnetic acoustic transducer, Trans. Jpn. Soc. Mech. Eng. Ser. A, 2010, vol. 76, no. 763, pp. 290–295.

    Article  CAS  Google Scholar 

  8. Li, S., Hassanin, H., Attallah, M.M., Adkins, N.J.E., and Essa, K., The development of TiNi-based negative Poisson’s ratio structure using selective laser melting, Acta Mater., 2016, vol. 105, pp. 75–83.

    Article  CAS  Google Scholar 

  9. Materials Project. Open Web Base. TiNi. https://www.materialsproject.org/materials/mp-571/.

  10. Gaillac, R. and Coudert, F.-X., Elastic tensor analysis. http://progs.coudert.name/elate/mp?query=mp-571

  11. Zener, C., Contributions to the theory of beta-phase alloys, Phys. Rev., 1947, vol. 71, no. 12, pp. 846–851.

    Article  CAS  Google Scholar 

  12. Baughman, R.H., Shacklette, J.M., Zakhidov, A.A., and Stafstrom, S., Negative Poisson’s ratios as a common feature of cubic metals, Nature, 1998, vol. 392, pp. 362–365.

    Article  CAS  Google Scholar 

  13. Voight, W., Lehrbuch der Kristallphusik, Berlin: Teubner, 1928.

    Google Scholar 

  14. Reuss, A., Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, Z. Angew. Math. Mech., 1929, vol. 9, no. 1, pp. 49–58.

    Article  CAS  Google Scholar 

  15. Hill, R., The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A, 1952, vol. 65, no. 389, pp. 349–356.

    Article  Google Scholar 

  16. Mityushov, E.A., Odintsova, N.Yu., and Beresto-va, S.A., Formal scheme for calculating the effective elastic properties of textured metals, Mat. Model. Sist. Protsessov, 2003, no. 11, pp. 76–80.

  17. Kuznetsov, A.V., Muslov, S.A., Lotkov, A.I., Khachin, V.N., Grishkov, V.N., and Pushin, V.G., Elastic constants of TiNi near martensitic transformations, Izv. Vyssh. Uchebn. Zaved., Fiz., 1987, no. 7, pp. 98–99.

  18. Muslov, S.A., Shelyakov, A.V., and Andreev, V.A., Splavy s pamyat’yu formy: Svoistva, poluchenie i primenenie v tekhnike i meditsine (Alloys with Shape Memory: Properties, Obtaining and Application in Technique and Medicine), Moscow: Mozartika, 2018.

  19. Shermergor, T.D., Teoriya uprugosti mikroneodnorodnykh sred (Theory of Elasticity of Micro-Inhomogeneous Media), Moscow: Nauka, 1977.

  20. ELATE: Elastic Tensor Analysis. https://github.com/fxcoudert/elate.21

  21. Ranganathan, S.I. and Ostoja-Starzewski, M., Universal elastic anisotropy index, Phys. Rev. Lett., 2008, vol. 101, no. 5, art. ID 055504.

  22. Lethbridge, Z.A.D., Walton, R.I., Marmier, A.S.H., Smith, C.W., and Evans, K.E., Elastic anisotropy and extreme Poisson’s ratios in single crystals, Acta Mater., 2010, vol. 58, no. 19, pp. 6444–6451.

    Article  CAS  Google Scholar 

  23. Chung, D.H. and Buessem, W.R., The elastic anisotropy of crystals, J. Appl. Phys., 1967, vol. 38, no. 5, pp. 2010–2012.

    Article  CAS  Google Scholar 

  24. Goldshtein, V., Gorodtsov, V.A., and Lisovenko, D.S., Relation of Poisson’s ratio on average with Young’s modulus. Auxetics on average, Dokl. Phys., 2012, vol. 57, pp. 174–178. https://doi.org/10.1134/S102833581204009X

    Article  CAS  Google Scholar 

  25. Epishin, A.I. and Lisovenko, D.S., Extreme values of the Poisson’s ratio of cubic crystals, Tech. Phys., 2016, vol. 61, no. 10, pp. 1516–1524. https://doi.org/10.1134/S1063784216100121

    Article  CAS  Google Scholar 

  26. Ciarletta, M., Fabrizio, M., and Tibullo, V., Shape memory and phase transitions for auxetic materials, Math. Meth. Appl. Sci., 2014, vol. 37, no. 18, pp. 2864–2871.

    Article  Google Scholar 

  27. Muslov, S.A., Lotkov, A.I., and Arutyunov, S.D., Extrema of elastic properties of cubic crystals, Russ. Phys. J., 2019, vol. 62, no. 8, pp. 1417–1427.

    Article  Google Scholar 

  28. Wang, X.F., Jones, T.E., Li, W., and Zhou, Y.C., Extreme Poisson’s ratios and their electronic origin in B2 CsCl-type AB intermetallic compounds, Phys. Rev. B, 2012, vol. 85, art. ID 134108.

  29. Hatcher, N., Kontsevoi, O.Y., and Freeman, A.J., Martensitic transformation path of NiTi, Phys. Rev. B, 2009, vol. 80, art. ID 144203.

  30. Bihlmayer, G., Eibler, R., and Neckel, A., Elastic properties of B2-NiTi and B2-PdTi, Phys. Rev. B, 1994, vol. 50, art. ID 13113.

  31. Mercier, O., Melton, K.N., Gremaud, G., and Hägi, J., Single-crystal elastic constants of the equiatomic NiTi alloy near the martensitic transformation, J. Appl. Phys., 1980, vol. 51, no. 3, pp. 1833–1834. https://doi.org/10.1063/1.327750

    Article  CAS  Google Scholar 

  32. Ren, X., Taniwaki, K., Otsuka, K., Suzuki, T., Tanaka, K., and Chumlyakov, Yu.I., Elastic constants of Ti50Ni30Cu20 alloy prior to martensitic transformation, Philos. Mag. A, 1999, vol. 79, no. 1, pp. 31–41.

    Article  CAS  Google Scholar 

  33. Ren, X., Miura, N., Zhang, J., Otsuka, K., Tanaka, K., Koiwa, M., Suzuki, T., Chumlyakov, Yu.I., and Asai, M., A comparative study of elastic constants of Ti–Ni-based alloys prior to martensitic transformation, Mater. Sci. Eng., A, 2001, vol. 312, nos. 1–2, pp. 196–206.

  34. Šesták, P., Černý, M., and Pokluda, J., Elastic constants of austenitic and martensitic phases of NiTi shape memory alloy, in Recent Advances in Mechatronics, Berlin: Springer, 2010, pp. 1–6.

    Google Scholar 

  35. Zengetal, Z.-Y., First-principles determination of the structure, elastic constant, phase diagram and thermodynamics of NiTi alloy, Physica B, 2010, vol. 405, pp. 3665–3672.

    Article  Google Scholar 

  36. Wagner, M.F.-X. and Windl, W., Lattice stability, elastic constants and macroscopic moduli of NiTi martensites from first principles, Acta Mater., 2008, vol. 56, pp. 6232–6245.

    Article  CAS  Google Scholar 

  37. Huang, X., Bungaro, C., Godlevsky, V., and Rabe, K.M., Lattice instabilities of cubic NiTi from first principles, Phys. Rev. B, 2001, vol. 65, art. ID 014108.

  38. Lai, W.S. and Liu, B.X., Lattice stability of some Ni–Ti alloy phases versus their chemical composition and disordering, J. Phys.: Condens. Matter, 2000, vol. 12, pp. L53–L60.

    CAS  Google Scholar 

  39. Lu, J.-M., Hu, Q.-M., and Yang, R., Composition-dependent elastic properties and electronic structures of off-stoichiometric TiNi from first-principles calculations, Acta Mater., 2008, vol. 56, no. 17, pp. 4913–4920. https://doi.org/10.1016/j.actamat.2008.06.006

    Article  CAS  Google Scholar 

  40. Ye, Y.Y., Chan, C.T., and Ho, K.M., Structural and electronic properties of the martensitic alloys TiNi, TiPd, and TiPt, Phys. Rev. B, 1997, vol. 56, no. 7, pp. 3678–3689. https://doi.org/10.1103/PhysRevB.56.3678

    Article  CAS  Google Scholar 

  41. Yu, F. and Liu, Y., First-principles calculations of structural, mechanical, and electronic properties of the B2-phase NiTi shape-memory alloy under high pressure, Computation, 2019, vol. 7, no. 4, art. ID 57.

  42. Haskins, J.B. and Lawson, J.W., Finite temperature properties of NiTi from first principles simulations: Structure, mechanics, and thermodynamics, J. Appl. Phys., 2017, vol. 121, no. 20, art. ID 205103.

  43. Cheng, D.Y., Zhao, S.J., Wang, S.Q., and Ye, H.Q., First principles study of the elastic properties and electronic structure of NiTi, CoTi and FeTi, Philos. Mag. A, 2001, vol. 81, pp. 1625–1632.

    Article  CAS  Google Scholar 

  44. Hu, Q.M., Yang, R., Lu, J.M., Wang, L., Johansson, B., and Vitos, L., Effect of Zr on the properties of (TiZr)Ni alloys from first-principles calculations, Phys. Rev. B, 2007, vol. 76, art. ID 224201.

  45. Wojciechowski, K.W., Poisson’s ratio of anisotropic systems, Comput. Methods Sci. Technol., 2005, vol. 11, no. 1, pp. 73–79.

    Article  Google Scholar 

  46. Ballato, A., Poisson’s ratio for tetragonal, hexagonal, and cubic crystals, IEEE Trans. Ultrason., Ferroelectr. Freq. Control, 1996, vol. 43, no. 1, pp. 56–62.

    Article  Google Scholar 

  47. Lotkov, A.I. and Grishkov, V.N., Titanium nickelide, crystal structure and phase transformations, Izv. Vyssh. Uchebn. Zaved., Fiz., 1985, vol. 28, no. 5, pp. 68–87.

    Google Scholar 

  48. Muslov, S.A., Primenenie materialov s effektom pamyati formy v nauke, tekhnike i meditsine (Application of Materials with Shape Memory Effect in Science, Technology, and Medicine), Moscow: Folium, 2007.

Download references

Funding

This work was supported by the State Assignment of the Institute of Strength Physics and Materials Science of Siberian Branch of the Russian Academy of Sciences (project no. FWRW-2021-0004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Muslov, A. I. Lotkov or V. N. Timkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muslov, S.A., Lotkov, A.I. & Timkin, V.N. Poisson Ratio of TiNi. Inorg. Mater. Appl. Res. 13, 306–317 (2022). https://doi.org/10.1134/S2075113322020307

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113322020307

Keywords:

Navigation