Skip to main content
Log in

High-Temperature Corrosion of a Nickel Alloy

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

High-temperature corrosion of nickel superalloy VZhM4-VI is studied in environments containing different concentrations of corrosive SO2 (0.01, 1.00, and 10.00%). The corrosion process results in the formation of a mixture of different oxides on the alloy surface. As the SO2 content of the corrosive environment is increased, the metal is affected by progressively more severe corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. El-Awadi, G.A., Abdel-Samad, S., and Elshazly, E.S., Hot corrosion behavior of Ni based Inconel 617 and Inconel 738 superalloys, Appl. Surf. Sci., 2016, vol. 378, pp. 224–230.

    Article  CAS  Google Scholar 

  2. Chang, J.X., Wang, D., Zhang, G., et al., Interaction of Ta and Cr on type-I hot corrosion resistance of single crystal Ni-base superalloys, Corros. Sci., 2017, vol. 117, pp. 35–42.

    Article  CAS  Google Scholar 

  3. Sumner, J., Encinas-Oropesa, A., Simms, N.J., and Nicholls, J.R., Type II hot corrosion: Behavior of CMSX-4 and IN738LC as a function of corrosion environment, Mater. Corros., 2014, vol. 65, pp. 188–196.

    Article  CAS  Google Scholar 

  4. Ganesan, P. and Smith, G.D., Oxide scale formation on selected candidate combustor alloys in simulated gas turbine environments, J. Mater. Eng., 1988, vol. 4, no. 9, pp. 337–343.

    Article  Google Scholar 

  5. Abedini, M., Jahangiri, M.R., and Karimi, P., Oxidation and hot corrosion behaviors of service-exposed and heat-treated gas turbine vanes made of IN939 alloy, Oxid. Met., 2018, vol. 90, pp. 469–484.

    Article  CAS  Google Scholar 

  6. Gishvarov, A.S. and Davydov, M.N., Sulfide-oxide corrosion of gas turbine blades, Mezhvuzovskii sbornik nauchnykh trudov “Voprosy teorii i rascheta rabochikh protsessov teplovykh dvigatelei” (Interuniversity Collection of Scientific Papers “Issues of Theory and Calculation of Working Processes of Heat Engines”), Ufa: Ufimsk. Gos. Aviats. Tekh. Univ., no. 20, pp. 157–169.

  7. Zurek, Z., Jedlinski, J., Kowalski, K., Kolarik, V., Engel, W., and Musul, J., Sulphidation and oxidation of Ni22Cr10Al1Y alloy in H2/H2S and SO2 atmosphere at high temperatures, J. Mater. Sci., 2000, vol. 35, pp. 685–692.

    Article  CAS  Google Scholar 

  8. Min, P.G., Kablov, D.E., Sidorov, V.V., and Vadeev, V.E., The influence of sulfur, phosphorus, and silicon impurities on structure and properties of single crystals of nickel heat-resistant alloys, Inorg. Mater.: Appl. Res., 2019, vol. 10, pp. 220–225. https://doi.org/10.1134/S2075113319010234

    Article  Google Scholar 

  9. Lai, H., Cao, Y., Viklund, P., Karlsson, F., Johansson, L.-G., and Stiller, K.M., High temperature corrosion of Ni-based alloys SCA425+ and IN792, Oxid. Met., 2013, vol. 80, pp. 505–516.

    Article  CAS  Google Scholar 

  10. Deodeshmukh, V.P., Evaluating the hot corrosion behavior of high-temperature alloys for gas turbine engine components, JOM, 2015, vol. 67, no. 11, pp. 2068–2614. https://doi.org/10.1007/s11837-015-1635-x

    Article  Google Scholar 

  11. Gregoire, B., Montero, X., Galetz, M.C., Bonnet, G., and Pedraza, F., Correlations between the kinetics and the mechanisms of hot corrosion of pure nickel at 700°C, Corros. Sci., 2019, vol. 155, pp. 134–145.

    Article  CAS  Google Scholar 

  12. Birks, N., Meier, G.H., and Pettit, F.S., Introduction to the High-Temperature Oxidation of Metals, Cambridge: Cambridge Univ. Press, 2006.

    Book  Google Scholar 

  13. Skovorodnikov, P.V., Busov, N.S., Poilov, V.Z., and Kazantsev, A.L., Modeling the process of high-temperature corrosion temp-resistant nickel-base alloys in a corrosive-active environment, Proc. All-Russ. Sci.-Pract. Conf. (with Int. Particip.) “Chemistry. Ecology. Urbanism”, Perm’: Perm Nat. Res. Polytekn. Univ., 2020, vol. 4, pp. 156–159. ISBN 978-5-398-02341-1. https://oahp. pstu.ru/wp-content/uploads/2020/05/HimiyaEkologiya Urbanistika_Tom-4_2020.pdf.

    Google Scholar 

  14. Jalowicka, A., Nowak, W.J., Naumenko, D., and Quadakkers, W.J., Effect of SO2 addition on air oxidation behavior of CM247 and CMSX-4 at 1050°C, JOM, 2016, vol. 68, no. 11, pp. 2776–2785. https://doi.org/10.1007/s11837-016-2072-1

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was implemented using the research facilities of the Center of Advanced Chemical Technologies and Physicochemical Research, Perm National Research Polytechnic University.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within project RFMEFI62120X0038 (no. 075-15-2020-532, dated April 27, 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Skovorodnikov.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poilov, V.Z., Kazantsev, A.L., Skovorodnikov, P.V. et al. High-Temperature Corrosion of a Nickel Alloy. Inorg. Mater. Appl. Res. 13, 39–43 (2022). https://doi.org/10.1134/S2075113322010324

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113322010324

Keywords:

Navigation