Skip to main content
Log in

Relationship of Structure Parameters with Performance Characteristics of Shipbuilding Steels of Different Alloying

  • METAL SCIENCES. METALLURGY
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The paper presents the results of a study of the relationship between strength and performance (ductile–brittle transition temperatures Tdb and zero plasticity NDT, critical opening at the crack tip CTOD at a test temperature of –40°C) on the structural parameters of hot-rolled plate made of low-carbon low-alloy steels with different contents of the main alloying and microalloying elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. Tdb is the critical temperature of brittleness at which at least 70% of the fibrous component is observed in the fracture of a specimen of full-scale thickness with a concentrator in the form of a notch at three-point static bending before fracture.

  2. NDT is the critical brittleness temperature (“zero plasticity temperature”) defined as the maximum temperature at which a standard size specimen fractures with a brittle hardfacing and initiating a crack by a notch on its surface under impact loading.

REFERENCES

  1. ND no. 2-020101-104. Rossiiskii morskoi registr sudokhodstva. Pravila klassifikatsii i postroiki morskikh sudov. Chast’ XIII: Materialy (ND no. 2-020101-104. Russian Maritime Register of Shipping, Rules for Classification and Construction of Seagoing Ships, Part XIII: Materials), St. Petersburg, 2020.

  2. Gusev, M.A., Il’in, A.V., and Larionov, A.V., Certification of shipbuilding materials for ships operating in the Arctic, Sudostroenie, 2014, no. 5 (816), pp. 39–43.

  3. Filin, V.Yu., Quality control of steels for large-sized welded structures of the Arctic shelf: Application of Russian and foreign requirements, Inorg. Mater.: Appl. Res., 2019, vol. 10, pp. 1492–1503. https://doi.org/10.1134/S207511331906008X

    Article  Google Scholar 

  4. Sych, O.V., Scientific and technological bases for developing cold-resistant steel with a guaranteed yield strength of 315–750 MPa for Arctic conditions. Part 1: Alloying principles and requirements for sheet product structure, Inorg. Mater.: Appl. Res., 2019, vol. 10, pp. 1265–1281. https://doi.org/10.1134/S207511331906025X

    Article  Google Scholar 

  5. Tazov, M.F., Tsvetkov, D.S., and Goroshko, T.V., Study of the inhomogeneity of mechanical properties and microstructure across the thickness of a sheet of steel of K65 strength category, manufactured by thermomechanical processing, Probl. Chern. Metall. Materialoved., 2013, no. 2, pp. 72–77.

  6. Goli-Oglu, E.A. and Bokachev, Yu.A., Controlled processing of thick low-alloy structural steel plate at NLMK DanSteel, Steel Transl., 2014, vol. 44, pp. 688–695. https://doi.org/10.3103/S0967091214090083

    Article  Google Scholar 

  7. Goli-Oglu, E.A. and Kichkina, A.A., Micro- and nanostructural nonuniformity through the thickness of 100 mm structural steel plate after TMT and HT, Me-tallurgist, 2017, vol. 60, pp. 1161–1168. https://doi.org/10.1007/s11015-017-0422-z

    Article  CAS  Google Scholar 

  8. Jia, T., Zhou, Y., Jia, X.X., and Wang, Z., Effect of microstructure on CVT impact toughness in thermomechanically processed high strength microalloyed steel, Metall. Mater. Trans. A, 2017, vol. 48, pp. 685–696.

    Article  CAS  Google Scholar 

  9. Lavrentiev, A.A., Golosienko, S.A., Ilyin, A.V., Mikhailov, M.S., Motovilina, G.D., Petrov, S.N., and Sadkin, K.E., Resistance of high-strength medium-alloy steel to brittle fracture and its connection to the structural state parameters, Inorg. Mater.: Appl. Res., 2020, vol. 11, pp. 1447–1461. https://doi.org/10.1134/S2075113320060131

    Article  Google Scholar 

  10. Orlov, V.V., Principles of controlled formation of nanosized structural elements in pipe steels upon significant plastic deformations, Inorg. Mater.: Appl. Res., 2012, vol. 3, pp. 466–474. https://doi.org/10.1134/S207511331206007X

    Article  Google Scholar 

  11. Smirnov, M.A., Pyshmintsev, I.Y., Maltseva, A.N., and Mushina, O.V., Effect of ferrite–bainite structure on the properties of high-strength pipe steel, Metallurgist, 2012, vol. 56, pp. 43–51. https://doi.org/10.1007/s11015-012-9534-7

    Article  CAS  Google Scholar 

  12. Bingley, M.S., Effect of grain size and carbide thickness on impact transition temperature of low carbon structural steels, Mater. Sci. Technol., 2001, vol. 17, pp. 700–714.

    Article  CAS  Google Scholar 

  13. Kazakov, A.A., Kiselev, D.V., Kazakova, E.I., Kurochkina, O.V., Khlusova, E.I., and Orlov, V.V., Influence of structural anisotropy in ferrite–bainite tube strip steels after thermomechanical treatment on the level of their mechanical properties, Chern. Met., 2010, no. 6, pp. 7–13.

  14. Kichkina, A.A., Matrosov, M.Y., Efron, L.I., Klyukvin, M.B., and Golovanov, A.V., Effect of structural anisotropy of ferrite–bainite pipe steel on mechanical properties in tensile and impact bending tests, Metallurgist, 2011, vol. 54, art. ID 808. https://doi.org/10.1007/s11015-011-9379-5

    Article  CAS  Google Scholar 

  15. Nastich, S.Yu., Ferritic–bainitic structure and ductile fracture resistance of high–strength pipe steels, Russ. Metall. (Metally), 2013, vol. 2013, pp. 765–771. https://doi.org/10.1134/S0036029513100108

    Article  Google Scholar 

  16. Urtsev, V.N., Kornilov, V.L., Shmakov, A.V., Kras-nov, M.L., Stekanov, P.A., Platov, S.I., Razumov, I.K., and Gornostyrev, Yu.N., Formation of the structural state of a high-strength low-alloy steel upon hot rolling and controlled cooling, Phys. Met. Metallogr., 2019, vol. 120, pp. 1233–1241. https://doi.org/10.1134/S0031918X19120160

    Article  CAS  Google Scholar 

  17. Pyshmintsev, I.Y., Boryakova, A.N., Smirnov, M.A., and Dement’eva, N.V., Properties of low-carbon steels containing bainite in the structure, Metallurgist, 2009, vol. 53, pp. 735–742. https://doi.org/10.1007/s11015-010-9241-1

    Article  CAS  Google Scholar 

  18. Nastich, S.Yu., Effect of bainite component morphology on the microstructure of X70 low-alloyed steel on thick plate cold resistance, Metallurgist, 2012, vol. 56, pp. 196–204. https://doi.org/10.1007/s11015-012-9558-z

    Article  CAS  Google Scholar 

  19. Isasti, N., Jorge-Badiola, D., Taheri, M.L., and Uranga, P., Microstructural features controlling mechanical properties in Nb–Mo microalloyed steels. Part II: Impact toughness, Metall. Mater. Trans. A, 2014, vol. 45, pp. 4972–4982.

    Article  CAS  Google Scholar 

  20. Thridandapani, R.R., Misra, R.D.K., Mannering, T., Panda, D., and Jansto, S., The application of stereological analysis in understanding differences in toughness of V- and Nb-microalloyed steels of similar yield strength, Mater. Sci. Eng., A, 2006, vol. 422, nos. 1–2, pp. 285–291.

  21. Hu, J., Du, L.X., Zang, M., Yin, S.J., Wang, Y.G., Qi, X.Y., Gao, X.H., and Misra, R.D.K., On the determining role of acicular ferrite in V–N microalloyed steel in increasing strength-toughness combination, Mater. Charact., 2016, vol. 118, pp. 446–453.

    Article  CAS  Google Scholar 

  22. Nastich, S.Yu. and Matrosov, M.Yu., High-strength pipe steel structure formation during thermomechanical treatment, Metallurgist, 2016, vol. 59, pp. 784–794. https://doi.org/10.1007/s11015-016-0174-1

    Article  CAS  Google Scholar 

  23. Kazakov, A.A., Kiselev, D.V., Sych, O.V., and Khlusova, E.I., Methodology for assessing the microstructural heterogeneity in thickness of sheet products made of cold-resistant low-alloy steel for Arctic applications, Chern. Met., 2020, no. 9, pp. 11–19.

  24. Kazakov, A.A., Kiselev, D.V., Sych, O.V., and Khlusova, E.I., Quantitative assessment of structural inhomogeneity in cold-resistant low-alloy steel sheets for interpretation of technological features of its manufacturing, Chern. Met., 2020, no. 11, pp. 4–14.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Sych or E. I. Khlusova.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sych, O.V., Khlusova, E.I. Relationship of Structure Parameters with Performance Characteristics of Shipbuilding Steels of Different Alloying. Inorg. Mater. Appl. Res. 12, 1439–1449 (2021). https://doi.org/10.1134/S2075113321060253

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321060253

Keywords:

Navigation