Skip to main content
Log in

Diffusion-Thermal Phase Transformations in Titanium Hydride Containing a Multi-Barrier Systems of Hydrogen Traps

  • MATERIALS FOR ENERGETICS AND RADIATION-RESISTANT MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Diffusion-thermal phase transformations in modified titanium hydride containing a multi-barrier system of hydrogen traps are considered. Modification of titanium hydride was carried out by the method of layer-by-layer electrochemical precipitation of metallic titanium and copper from organic and inorganic solutions of their salts. The creation of a multilayer coating (Ti–Cu) on the surface of the titanium hydride by the electrochemical precipitation method increases the thermal stability of the metal hydride system by 229.7°C. By using the methods of X-ray-phase, X-ray structural, and electron-probe microanalysis, it has been shown that the phase composition of the modified titanium hydride in a temperature range 100–700°C is constant. The most significant changes in the crystal lattice in the modified titanium hydride occur at a temperature of 500 °C owing to hydrogenation of the modified titanium shell and blocking of the microcracks of the surface with a copper coating; the period of the unit cell and the volume of the hydride-phase crystal change. The highest concentration of hydrogen in the surface layer (up to 87.9%) occurs in the temperature range of 300–500°C, which ensures the maximum defect density in the crystal lattice. At 700°C, one can observe a decrease in the dislocation density and a decrease in the crystal cell parameters associated with the annealing mode of titanium hydride and hydrogen thermal diffusion into the volume of material. The metallic titanium precipitated on the titanium hydride surface is an effective structural trap of hydrogen diffusing into the surface layers during thermal heating; the creation of an additional protective copper sheath prevents thermal diffusion of hydrogen into the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Beck, R.L., Mueller, W.M., Blackledge, J.P., and Libowitz, G.G., Zirconium hydrides and hafnium hydrides, in Metal Hydrides, New York–London: Academic, 1968, pp. 196–277.

  2. Lee, J.C. and McCormick, N.J., Risk and Safety Analysis of Nuclear Systems, Wiley, 2011.

    Book  Google Scholar 

  3. Itoigawa, N., Wilpert, B., and Fahlbruch, B., Emerging Demands for the Safety of Nuclear Power Operations: Challenge and Response, Boca Raton, FL: CRC Press, 2015.

    Google Scholar 

  4. Antaki, G. and Gilada, R., Nuclear Power Plant Safety and Mechanical Integrity: Design and Operability of Mechanical Systems, Equipment and Supporting Structures, Kidlington, Oxford: Butterworth–Heinemann, 2015.

  5. Dergachev, Yu.M., A model of hydrogen absorption by metals, Inorg. Mater., 2009, vol. 45, no. 8, pp. 863–866. https://doi.org/10.1134/S002016850908007X

    Article  CAS  Google Scholar 

  6. Griessen, R., Short history of hydrogen, in Science and Technology of Hydrogen in Metals, Amsterdam: Vrije Univ., 2008, ch. I.

    Google Scholar 

  7. Van Mal, H.H., Stability of ternary hydrides and some application, Philips Res. Rep., Suppl., 1976, no. 1, pp. 1–87.

  8. Park, J., Kim, W., and Won, M., Hydrogen sorption in zirconium and relevant surface phenomena, Mater. Trans., 2007, vol. 48, no. 5, pp. 1012–1016.

    Article  CAS  Google Scholar 

  9. Terrani, K.A., Balooch, M., Wongsawaeng, D., Jaiyen, S., and Olander, D.R., The kinetics of hydrogen desorption from and adsorption on zirconium hydride, J. Nucl. Mater., 2010, vol. 397, nos. 1–3, pp. 61–68.

  10. Jimenez, C., Garcia-Moreno, F., and Pfretzschner, B., Decomposition of TiH2 studied in situ by synchrotron X-ray and neutron diffraction, Acta Mater., 2011, no. 59, pp. 6318–6330.

  11. Lavrenko, K.A., Shemet, V.Zh., Petrov, L.A., Teplov, O.A., and Dolukhanyan, S.K., High-temperature oxidation of titanium-hydride powders, Oxid. Met., 1990, vol. 33, no. 2, pp. 177–189.

    Article  CAS  Google Scholar 

  12. Pavlenko, V.I., Cherkashina, N.I., and Yastrebinsky, R.N., Creating nanoshell on the surface of titanium hydride bead, Nanotechnol. Constr., 2016, vol. 8, no. 6, pp. 102–119.

    CAS  Google Scholar 

  13. Pavlenko, V.I., Cherkashina, N.I., Yastrebinsky, R.N., and Demchenko, O.V., On enhancing the thermal stability of metal hydrides by ion–plasma vacuum magnetron sputtering, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2017, vol. 11, pp. 254–258.

    Article  CAS  Google Scholar 

  14. Yastrebinskii, R.N., Cherkashina, N.I., and Kuprieva, O.V. Structural phase characteristic of borosilicate coating, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 2014, vol. 57, no. 9, pp. 20–24.

    CAS  Google Scholar 

  15. Yastrebinsky, R.N., Pavlenko, V.I, Karnauhov, A.A., Cherkashina, N.I., and Yastrebinskaya, A.V., Thermal stability of titanium hydride modified by the electrochemical deposition of titanium metal, Mater. Res. Express, 2020, vol. 7, no. 10, art. ID 106519. https://doi.org/10.1088/2053-1591/abc0a2

    Article  CAS  Google Scholar 

  16. Golubkov, A.N., Baurin, A.Yu., Buchirin, A.V., Malkov, I.L., Musyaev, R.K., and Yukhimchuk, A.A., Manufacturing technology development for hydrogenated titanium pellets, in Izotopy vodoroda. Fizicheskaya khimiya. Bezopasnost’. Ekologiya (Isotopes of Hydrogen. Physical Chemistry. Safety. Ecology), Sarov: VNIIEF, 2017, pp. 158–163.

  17. Mirkin, L.I., Rentgenostrukturnyi analiz: Spravochnoe rukovodstvo (X-Ray Structural Analysis: Reference Guide), Moscow: Nauka, 1998.

  18. Reed, S.J.B., Electron Microprobe Analysis and Scanning Electron Microscopy in Geology, Cambridge: Cambridge Univ. Press, 2005.

    Book  Google Scholar 

  19. Sorokin, V.V., Sharapov, O.N., Shunkin, N.M., and Kiryushina, N.Yu., New polymeric composites based on epoxy resin with techogenic wastes, Vestn. Belgorod. Gos. Tekhnol. Univ. im. V.G. Shukhova, 2019, no. 6, pp. 8–13.

  20. Cherkashina, N.I. and Pavlenko, A.V., Influence of SiO2 crystal structure on the thermal cycle of polymer composites, Constr. Mater. Prod., 2018, vol. 1, no. 4, pp. 21–29.

    CAS  Google Scholar 

  21. Arbuzova, A.A. and Votyakov, M.A., Estimation of the influence of the state of the reinforcing polymer in the structure of polymeric fiber material using mathematical prediction methods, Chem. Bull., 2018, vol. 1, no. 1, pp. 12–17.

    CAS  Google Scholar 

  22. Hempelmann, R., Richter, D., and Strizker, B., Optic phonon modes and superconductivity in alpha phase (Ti, Zr)–(H, D) alloys, J. Phys. F: Met. Phys., 1982, vol. 12, no. 1, pp. 79–86.

    Article  CAS  Google Scholar 

  23. Zadoyan, D.M., Azizbekyan, L.A., and Valyuzhenich, M.K., Determination of excess dislocations density on radioraphic estimates of the size of crystal blocks and the focus of small-angle boundaries, Vestn. Samarsk. Gos. Tekh. Univ., Fiz.-Mat. Nauki, 2003, no. 19, pp. 177–179.

  24. Kubaschewski, O. and Hopkins, B.E., Oxidation of Metals and Alloys, London: Butterworths Sci., 1953.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

In this work, the equipment of the High Technology Center of Belgorod State Technical University was used.

Funding

This work was carried out within the framework of the governmental task of the Ministry of Education and Science of the Russian Federation, project no. FZWN-2020-0011.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. N. Yastrebinsky, G. G. Bondarenko, V. I. Pavlenko or A. A. Karnaukhov.

Additional information

Translated by E. Smirnova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yastrebinsky, R.N., Bondarenko, G.G., Pavlenko, V.I. et al. Diffusion-Thermal Phase Transformations in Titanium Hydride Containing a Multi-Barrier Systems of Hydrogen Traps. Inorg. Mater. Appl. Res. 12, 1206–1213 (2021). https://doi.org/10.1134/S2075113321050439

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321050439

Keywords:

Navigation