Skip to main content
Log in

Influence of Sulfidation Conditions of WO3 Nanocrystalline Film on Photoelectrocatalytic Activity of WS2/WO3 Hybrid Structure in Production of Hydrogen

  • PHYSICOCHEMICAL BASES FOR DEVELOPING MATERIALS AND TECHNOLOGIES
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The thermochemical treatment of tungsten trioxide (WO3) nanostructured films in hydrogen sulfide to obtain tungsten disulfide (WS2) layers in the WS2/WO3 hybrid structure is studied. The temperature and treatment time influence the structural-phase state, morphology, optical properties of a WS2/WO3/FTO photocathode (on fluorinated tin oxide (FTO) substrates), and its photoelectrocatalytic activity in the hydrogen evolution reaction in acidic solution is established. The sulfidation of WO3 nanoneedle films leads to the formation of a WS2/WO3 nanocrystalline hybrid structure under optimal conditions, which provides the separation of photogenerated carriers (electrons and holes) at the interphase boundaries (heterojunctions) necessary for the efficient photoactivated hydrogen evolution reaction according to Z scheme. The calculations of thermodynamic properties of the WS2/WO3 hybrid nanocatalyst show that synergistic effect of nanophases is possible in it to increase the catalytic activity of hydrogen evolution both on the basal planes of WS2 nanoclusters and on the surface of metal oxide nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Maeda, K. and Teramura, K., Photocatalyst releasing hydrogen from water, Nature, 2006, vol. 440, art. ID 295. https://doi.org/10.1038/440295a

    Article  CAS  PubMed  Google Scholar 

  2. Yang, W., Ramanujam Prabhakar, R., Tan, J., Tilley, S.D., and Moon, J., Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting, Chem. Soc. Rev., 2019, vol. 48, pp. 4979–5015. https://doi.org/10.1039/c8cs00997j

    Article  CAS  PubMed  Google Scholar 

  3. Huang, Z.-F., Song, J., Pan, L., Zhang, X., Wang, L., and Zou, J.-J., Tungsten oxides for photocatalysis, electrochemistry and phototherapy, Adv. Mater., 2015, vol. 27, pp. 5309–5327. https://doi.org/10.1002/adma.201501217

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, S., Chen, S., Liu, D., Zhang, J., and Peng, T., Layered WS2/WO3 Z-scheme photocatalyst constructed via an in situ sulfurization of hydrous WO3 nanoplates for efficient H2 generation, Appl. Surf. Sci., 2020, vol. 529, art. ID 147013. https://doi.org/10.1016/j.apsusc.2020.147013

    Article  CAS  Google Scholar 

  5. Liu, D., Zhang, S., Wang, J.M., Peng, T.Y., and Li, R.J., Direct Z-scheme 2D/2D photocatalyst based on ultrathin g-C3N4 and WO3 nanosheets for efficient visible-light driven H2 generation, ACS Appl. Mater. Interfaces, 2019, vol. 11, pp. 27913–27923. https://doi.org/10.1021/acsami.9b08329

    Article  CAS  PubMed  Google Scholar 

  6. Fominski, V., Romanov, R., Fominski, D., Soloviev, A., Rubinkovskaya, O., Demin, M., Maksimova, K., Shvets, P., and Goikhman, A., Performance and mechanism of photoelectrocatalytic activity of MoSx/WO3 heterostructures obtained by reactive pulsed laser deposition for water splitting, Nanomaterials, 2020, vol. 10, no. 5, art. ID 871. https://doi.org/10.3390/nano10050871

    Article  CAS  PubMed Central  Google Scholar 

  7. Fominski, V., Grigoriev, S., Romanov, R., Zuev, V., and Grigoriev, V., Properties of tungsten oxide thin films formed by ion–plasma and laser deposition methods for MOSiC-based hydrogen sensors, Semiconductors, 2012, vol. 46, no. 3, pp. 401–409. https://doi.org/10.1134/S1063782612030098

    Article  CAS  Google Scholar 

  8. Fominski, V., Gnedovets, A., Fominski, D., Romanov, R., Kartsev, P., Rubinkovskaya, O., and Novikov, S., Pulsed laser deposition of nanostructured MoS3/np-Mo//WO3 – y hybrid catalyst for enhanced (photo) electrochemical hydrogen evolution, Nanomaterials, 2019, vol. 9, no. 10, art. ID 1395. https://doi.org/10.3390/nano9101395

    Article  CAS  PubMed Central  Google Scholar 

  9. Nevolin, V.N., Grigoriev, S.N., Fominski, V.Yu., Romanov, R.I., Volosova, M.A., Fominski, D.V., and Dzhumaev, P.S., Application of pulsed laser deposition in reactive gaseous media to fabricate an effective hybrid MoSx/WOy catalyst for the reaction of hydrogen evolution, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 2, pp. 297–304. https://doi.org/10.1134/S2075113318020211

    Article  Google Scholar 

  10. Li, J., Hong, W., Jian, C., Cai, Q., and Liu, W., Seamless tungsten disulfide-tungsten heterojunction with abundant exposed active sites for efficient hydrogen evolution, Appl. Catal., B, 2019, vol. 244, pp. 320–326. https://doi.org/10.1016/j.apcatb.2018.11.042

    Article  CAS  Google Scholar 

  11. Chen, S., Xiao, Y., Xie, W., Wang, Y., Hu, Z., Zhang, W., and Zhao, H., Facile strategy for synthesizing nonstoichiometric monoclinic structured tungsten trioxide (WO3 – x) with plasma resonance absorption and enhanced photocatalytic activity, Nanomaterials, 2018, vol. 8, art. ID 553. https://doi.org/10.3390/nano8070553

    Article  CAS  PubMed Central  Google Scholar 

  12. Kumar, P., Singh, M., Gopal, P., and Reddy, G.B., Sulfurization of WO3 nanorods into WS2 as a function of H2S/Ar partial pressure, AIP Conf. Proc., 2018, vol. 1953, art. ID 030252. https://doi.org/10.1063/1.5032587

    Article  CAS  Google Scholar 

  13. Wu, Z., Fang, B., Bonakdarpour, A., Sun, A., Wilkinson, D.P., and Wanga, D., WS2 nanosheets as a highly efficient electrocatalyst for hydrogen evolution reaction, Appl. Catal., B, 2012, vol. 125, pp. 59–66. https://doi.org/10.1016/j.apcatb.2012.05.013

    Article  CAS  Google Scholar 

  14. Liu, M., Geng, A., and Yan, J., Construction of WS2 triangular nanoplates array for hydrogen evolution reaction over a wide pH range, Int. J. Hydrogen Energy, 2020, vol. 45, no. 4, pp. 2909–2916. https://doi.org/10.1016/j.ijhydene.2019.11.053

    Article  CAS  Google Scholar 

  15. Wang, X., Gan, X., Hu, T., Fujisawa, K., Lei, Y., Lin, Z., Xu, B., Huang, Z., Kang, F., Terrones, M., and Lv, R., Noble-metal-free hybrid membranes for highly efficient hydrogen evolution, Adv. Mater., 2016, vol. 29, art. ID 1603617. https://doi.org/10.1002/adma.201603617

    Article  CAS  Google Scholar 

  16. Tsai, Ch., Chan, K., Abild-Pedersen, F., and Nørskov, J.K., Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: A density functional study, Phys. Chem. Chem. Phys., 2014, vol. 16, art. ID 13156. https://doi.org/10.1039/c4cp01237b

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The studies concerning WS2/WO3/FTO hybrid nanomaterials, their structural and phase characteristics, and experimental and theoretical analysis of photoelectrocatalytic properties were performed at the National Research Nuclear University MEPhI and financially supported by the Russian Ministry of Science and Higher Education (project FSWU-2020-0035). The optical properties of nanomaterials were studied at the Baltic Federal University in Research and Educational Center “Functional Nanomaterials” with the financial support of the Russian Ministry of Science and Higher Education (project FZWM-2020-0008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. N. Nevolin, D. V. Fominski, R. I. Romanov, O. V. Rubinkovskaya, A. A. Soloviev, P. V. Shvets, E. A. Maznitsyna or V. Yu. Fominski.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevolin, V.N., Fominski, D.V., Romanov, R.I. et al. Influence of Sulfidation Conditions of WO3 Nanocrystalline Film on Photoelectrocatalytic Activity of WS2/WO3 Hybrid Structure in Production of Hydrogen. Inorg. Mater. Appl. Res. 12, 1139–1147 (2021). https://doi.org/10.1134/S2075113321050270

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321050270

Keywords:

Navigation