Skip to main content
Log in

TiC–Cr3C2–WC–NiCr–Mo–C Cermet Plasma Coatings

  • NEW TECHNOLOGIES OF PRODUCTION AND PROCESSING OF MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Two bulk cermets TiC–WC–Cr3C2–(Ni80Cr20)–Mo–2.8C after liquid-phase sintering at 1400°C for 1 h were used to manufacture powders for plasma spraying of coatings. The cermets were fabricated at a limited time of mechanical alloying at the mixing stage. Plasma coatings were sprayed on a setup with a nozzle attached to a plasmatron for local protection of the sprayed particles from the air atmosphere. The WC–Cr3C2–C content in the cermets provided compensation for carbon losses at all stages of coating production and the formation of an annular zone, the volume of which determines the increase in the TiC content in the coatings by 20% and the formation of additional carbides in the matrix. The microhardness of cermet at an initial carbide content of 60% was 15.26–16.83 GPa with a load on the indenter of 200 G and 20.91–24.68 GPa with a load on the indenter of 20 G, and the difference was explained by a scale factor. The contribution of the microhardness of carbides to the microhardness of cermet with an initial carbide content of 60% was estimated according to the rule of mixtures, proceeding from their volume fraction and microhardness of cermet under a load on the indenter of 20 G. In the initial powder for spraying, this contribution is high, 33.19 GPa, close to the hardness of TiC. The contribution of microhardness of carbides in the coating is lower, 28.09 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kalita, V.I., Radyuk, A.A., Komlev, D.I., Ivannikov, A.Yu., Mikhailova, A.B., and Alpatov, A.V., Cermet plasma TiC–Cr3C2–NiCr–Mo–C coatings, Inorg. Mater.: Appl. Res., 2019, vol. 10, no. 2, pp. 402–410. https://doi.org/10.1134/S2075113319020205

    Article  Google Scholar 

  2. Tolstobrov, A.K., Mitrofanov, B.V., and Zashlyapin, M.Yu., Effect of the binder metal on the strength and wear resistance of plasma coatings based on titanium and titanium-zirconium carbonitrides, Powder Metall. Met. Ceram., 1992, vol. 31, pp. 948–952. https://doi.org/10.1007/BF00797622

    Article  Google Scholar 

  3. Podchernyaeva, I.A., Kisel’, V.M., Evdokimenko, Yu.I., Lavrenko, V.A., and Pasichnyi, V.V., Investigation of a wear-and corrosion-resistant coating of the TiCN–Ni-alloy system, obtained by high-speed gas-flame spraying, Powder Metall. Met. Ceram., 1999, vol. 38, pp. 358–361. https://doi.org/10.1007/BF02676169

    Article  CAS  Google Scholar 

  4. Tian, L.-H., Li, C.-X., Li, C.-J., and Yang, G.-J., Effect of dispersed TiC content on the microstructure and thermal expansion behavior of shrouded-plasma-sprayed FeAl/TiC composite coatings, J. Therm. Spray Technol., 2012, vol. 21, nos. 3–4, pp. 689–694.

  5. Tsidulko, A.G., Rusanov, V.M., Bobrov, G.V., Doku-kina, I.A., Timofeev, I.I., and Shaposhnikova, T.I., Loss of carbon during plasma-spraying of clad carbide powders, Powder Metall. Met. Ceram., 1992, vol. 31, pp. 883–885. https://doi.org/10.1007/BF00797515

    Article  Google Scholar 

  6. Berger, L.-M., Application of hardmetals as thermal spray coatings, Int. J. Refract. Met. Hard Mater., 2015, vol. 49, pp. 350–364.

    Article  CAS  Google Scholar 

  7. Hussainova, I. and Antonov, M., Assessment of cermets performance in erosive media, Int. J. Mater. Prod. Technol., 2007, vol. 28, no. 3/4, pp. 361–376.

    Article  CAS  Google Scholar 

  8. Rödiger, O., Zur kenntnis des systems wolframkarbid–titankarbid–chromkarbid, Metall, 1953, vol. 7, pp. 967–969.

    Google Scholar 

  9. Jin, C., Onuoha, C.C., Farhat, Z.N., Kipouros, G.J., and Plucknett, K.P., Reciprocating wear behaviour of TiC-stainless steel cermets, Tribol. Int., 2017, vol. 105, pp. 250–263.

    Article  CAS  Google Scholar 

  10. Wana, W., Xiong, J., and Liang, M., Effects of secondary carbides on the microstructure, mechanical properties and erosive wear of Ti(CN)-based cermets, Ceram. Int., 2017, vol. 43, pp. 944–952.

    Article  Google Scholar 

  11. Zheng, Y., You, M., Xiong, W., Liu, W., and Wang, S., Effect of Cr3C2 on valence-electron structure and plasticity of rim phase in Ti(C,N)-based cermets, J. Am. Ceram. Soc., 2004, vol. 87, no. 3, pp. 460–464.

    Article  CAS  Google Scholar 

  12. Xiong, H., Li, Z., and Zhou, K., TiC whisker reinforced ultra-fine TiC-based cermets: Microstructure and mechanical properties, Ceram. Int., 2016, vol. 42, pp. 6858–6867.

    Article  CAS  Google Scholar 

  13. Yang, Q., Xiong, W., Zhang, M., Huang, B., and Chen, S., Microstructure and mechanical properties of Mo-free Ti(C,N)-based cermets with Ni–xCr binders, J. Alloys Compd., 2015, vol. 636, pp. 270–274.

    Article  CAS  Google Scholar 

  14. Zhou, W., Zheng, Y., Zhao, Y., Ma, Y., and Xiong, W., Microstructure characterization and mechanical properties of Ti(C,N)-based cermets with AlN addition, Ceram. Int., 2015, vol. 41, pp. 5010–5016.

    Article  CAS  Google Scholar 

  15. Zhang, Y., Zheng, Y., Zhong, J., Yuan, Q., and Wu, P., Effect of carbon content and cooling mode on the microstructure and properties of Ti(C,N)-based cermets, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 1009–1013.

    Article  CAS  Google Scholar 

  16. Zhan, B., Liu, N., Jin, Z.-B., Li, Q.-L., and Shi, J.-G., Effect of VC/Cr3C2 on microstructure and mechanical properties of Ti(C,N)-based cermets, Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 1096–1105.

    Article  CAS  Google Scholar 

  17. Zhang, W.N., Wang, H.Y., Wang, P.J., Zhang, J., He, L., and Jiang, Q.C., Effect of Cr content on the SHS reaction of Cr–Ti–C system, J. Alloys Compd., 2008, vol. 465, pp. 127–131.

    Article  CAS  Google Scholar 

  18. Wan, W., Xiong, J., Yang, M., Guo, Z., Dong, G., and Yi, C., Effects of Cr3C2 addition on the corrosion behavior of Ti(CN)-based cermets, Int. J. Refract. Met. Hard Mater., 2012, vol. 31, pp. 179–186.

    Article  CAS  Google Scholar 

  19. Manoj Kumar, B.V., Basuw, B., Kang, S., and Ramkumar, J., Erosion wear behavior of TiCN–Ni cermets containing secondary carbides (WC/NbC/TaC), J. Am. Ceram. Soc., 2006, vol. 89, no. 12, pp. 3827–3831. https://doi.org/10.1111/j.1551-2916.2006.01277.x

    Article  CAS  Google Scholar 

  20. Pirso, J., Viljus, M., and Letunovitš, S., Friction and dry sliding wear behaviour of cermets, Wear, 2006, vol. 260, pp. 815–824.

    Article  CAS  Google Scholar 

  21. Kiparisov, S.S., Levinskii, Yu.V., and Petrov, A.P., Karbid titana. Poluchenie, svoistva, primenenie (Titanium Carbide. Obtaining, Properties, Application), Moscow: Metallurgiya, 1987.

  22. Kalita, V.I., Radyuk, A.A., Komlev, D.I., et al., Cermet plasma coatings based on silicon carbide, Inorg. Mater.: Appl. Res., 2019, vol. 10, pp. 1145–1152. https://doi.org/10.1134/S2075113319050095

    Article  Google Scholar 

  23. Kalita, V.I. and Komlev, D.I., Plazmennye pokrytiya s nanokristallicheskoi i amorfnoi strukturoi (Plasma Coatings with Nanocrystalline and Amorphous Structure), Moscow: Biblioteka, 2008.

  24. Grathwohl, G. and Warren, R., The effect of cobalt content on the microstructure of liquid-phase sintered TaC–Co alloys, Mater. Sci. Eng., 1974, vol. 14, pp. 55–65.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-08-00059 A). The deposition of coatings and the study of the content of carbon, oxygen, and nitrogen in cermets were supported by the initiative research theme of the Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, no. 075-00328-21-00.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Kalita, A. A. Radyuk, A. B. Mikhailova, A. V. Alpatov or D. D. Titov.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, V.I., Radyuk, A.A., Komlev, D.I. et al. TiC–Cr3C2–WC–NiCr–Mo–C Cermet Plasma Coatings. Inorg. Mater. Appl. Res. 12, 1378–1385 (2021). https://doi.org/10.1134/S2075113321050178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321050178

Keywords:

Navigation