Skip to main content
Log in

Gene-Activated Hydrogels Based on Sodium Alginate for Reparative Myogenesis of Skeletal Muscle

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Two variants of gene-activated hydrogels based on sodium alginate containing plasmid DNA with the gene of vascular endothelial growth factor (VEGF-A) are developed. The former represented alginate hydrogel without additional components; the latter contained up to 25 wt % of octacalcium phosphate (OCP) micrograins. Alginate-based hydrogels without OCP are characterized by a honeycomb structure with the pore size of 50–200 μm and mechanical compression strength of 0.2 MPa. Addition of OCP micrograins results in filling of the polymer framework by them and an increase in the compression strength to 0.57 MPa at 16.7 wt % of OCP with a decrease to 0.49 MPa with an increase in the OCP content to 20 wt %. Both variants of gene-activated hydrogels induce reparative myogenesis in the central zone of muscle defect; a larger number of MyoG+ cells and newly formed MyH7B+ muscle fibers are identified as compared to analogous hydrogels without plasmid DNA after two weeks after surgery (p < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Palmese, L.L., Thapa, R.K., Sullivan, M.O., and Kiick, K.L., Hybrid hydrogels for biomedical applications, Curr. Opin. Chem. Eng., 2019, vol. 24, pp. 143–157.

    Article  Google Scholar 

  2. von Lospichl, B., Hemmati-Sadeghi, S., Dey, P., Dehne, T., Haag, R., Sittinger, M., Ringe, J., and Gradzielski, M., Injectable hydrogels for treatment of osteoarthritis – a rheological study, Colloids Surf., B, 2017, vol. 159, pp. 477–483.

    Article  CAS  Google Scholar 

  3. Hussain, Z., Thu, H.E., Shuid, A.N., Katas, H., and Hussain, F., Recent advances in polymer-based wound dressings for the treatment of diabetic foot ulcer: An overview of state-of-the-art, Curr. Drug Targets, 2018, vol. 19, no. 5, pp. 527–550.

    Article  CAS  Google Scholar 

  4. Bai, X., Gao, M., Syed, S., Zhuang, J., Xu, X., and Zhang, X.Q., Bioactive hydrogels for bone regeneration, Bioact. Mater., 2018, vol. 3, no. 4, pp. 401–417.

    Article  Google Scholar 

  5. Deev, R.B., Drobyshev, A.Yu., and Bozo, I.Ya., Ordinary and activated osteoplastic materials, Vestn. Travmatol. Ortoped. im. N.N. Priorova, 2015, no. 1, pp. 51–69.

  6. Odintsova, I.A., Chepurnenko, M.N., and Komarova, A.S., Myogenic satellite cells are a cambial reserve of muscle tissue, Geny Kletki, 2014, vol. 9, no. 1, pp. 6–14.

    Google Scholar 

  7. Cooper, R.N., Tajbakhsh, S., Mouly, V., et al., In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle, J. Cell Sci., 1999, vol. 112, no. 17, pp. 2895–2901.

    Article  CAS  Google Scholar 

  8. Yin, H., Price, F., and Rudnicki, M.A., Satellite cells and the muscle stem cell niche, Physiol. Rev., 2013, vol. 93, no. 1, pp. 23–67.

    Article  CAS  Google Scholar 

  9. Summary of Safety and Effectiveness Data (SSED). AUGMENT® Injectable. https://www.accessdata.fda. gov/cdrh_docs/pdf10/P100006S005b.pdf

  10. Hartmann-Fritsch, F., Marino, D., and Reichmann, E., About ATMPs, SOPs and GMP: The hurdles to produce novel skin grafts for clinical use, Transfus. Med. Hemother., 2016, vol. 43, no. 5, pp. 344–352.

    Article  Google Scholar 

  11. Gonzalez-Fernandez, T., Tierney, E.G., Cunniffe, G.M., O’Brien, F.J., and Kelly, D.J., Gene delivery of TGF-β3 and BMP2 in an MSC-laden alginate hydrogel for articular cartilage and endochondral bone tissue engineering, Tissue Eng., Part A, 2016, vol. 22, nos. 9–10, pp. 776–87.

  12. Wegman, F., Geuze, R.E., van der Helm, Y.J., Cumhur Öner, F., Dhert, W.J.A., and Alblas, J., Gene delivery of bone morphogenetic protein–2 plasmid DNA promotes bone formation in a large animal model, J. Tissue Eng. Regener. Med., 2014, vol. 8, no. 10, pp. 763–770.

    Article  CAS  Google Scholar 

  13. Wang, P., Huang, S., Hu, Z., Yang, W., Lan, Y., Zhu, J., Hancharou, A., Guo, R., and Tang, B., In situ formed anti-inflammatory hydrogel loading plasmid DNA encoding VEGF for burn wound healing, Acta Biomater., 2019, vol. 100, pp. 191–201.

    Article  CAS  Google Scholar 

  14. Song, J., Lee, M., Kim, T., Na, J., Jung, Y., Jung, G.Y., Kim, S., and Park, N., A RNA producing DNA hydrogel as a platform for a high performance RNA interference system, Nat. Commun., 2018, vol. 9, no. 1, art. ID 4331.

    Article  Google Scholar 

  15. Villate-Beitia, I., Truong, N.F., Gallego, I., Zàrate, J., Puras, G., Pedraz, J.L., and Segura, T., Hyaluronic acid hydrogel scaffolds loaded with cationic niosomes for efficient non-viral gene delivery, RSC Adv., 2018, vol. 8, no. 56, pp. 31934–31942.

    Article  CAS  Google Scholar 

  16. Chalanqui, M.J., Pentlavalli, S., McCrudden, C., Chambers, P., Ziminska, M., Dunne, N., and McCarthy, H.O., Influence of alginate backbone on efficacy of thermo-responsive alginate-g-P(NIPAAm) hydrogel as a vehicle for sustained and controlled gene delivery, Mater. Sci. Eng., C, 2019, vol. 95, pp. 409–421.

    Article  CAS  Google Scholar 

  17. Grigoryan, A.S. and Shevchenko, K.G., Some possible molecular mechanisms of VEGF encoding plasmids functioning, Geny Kletki, 2011, vol. 6, no. 3, pp. 24–28.

    Google Scholar 

  18. Keeney, M., van den Beucken, J.J.J.P., van der Kraan, P.M., et al., The ability of a collagen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with VEGF(165), Biomaterials, 2010, vol. 31, no. 10, pp. 2893–902.

    Article  CAS  Google Scholar 

  19. Bozo, I.Ya., Deev, R.V., Zhuravlyova, M.N., Komlev, V.S., Popov, V.K., Smirnov, I.V., and Fedotov, A.Yu., Gene-activated bone substitute based on octacalcium phosphate and doped with magnesium ions, Inorg. Mater.: Appl. Res., 2018, vol. 9, pp. 70–74. https://doi.org/10.1134/S2075113318010045

    Article  Google Scholar 

  20. Bozo, I.Ya., Maiorova, K.S., Drobyshev, A.Yu., Rozhkov, S.I., Volozhin, G.A., Eremin, I.I., Komlev, V.S., Smirnov, I.V., Rizvanov, A.A., Isaev, A.A., Popov, V.K., and Deev, R.V., Biological activity comparative evaluation of the gene-activated bone substitutes made of octacalcium phosphate and plasmid DNA carrying VEGF and SDF genes: Part 1 – In vitro, Geny Kletki, 2016, vol. 11, no. 4, pp. 34–42.

    Google Scholar 

  21. Chervyakov, Yu.V., Staroverov, I.N., Vlasenko, O.N., et al., Five-year results of treatment of patients with chronic lower limb ischemia using gene therapy, Angiol. Sosud. Khirurg., 2016, vol. 22, no. 4, pp. 38–45.

    Google Scholar 

  22. Komlev, V.S., Barinov, S.M., Bozo, I.I., et al., Bioceramics composed of octacalcium phosphate demonstrate enhanced biological behavior, ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 19, pp. 16610–16620.

    Article  CAS  Google Scholar 

  23. Bozo, I.Ya., Deev, R.V., Drobyshev, A.Yu., et al., Efficacy of gen-activated osteoplastic material based on octacalcium phosphate and plasmid DNA containing VEGF gene for critical-sized bone defects substitution, Vestn. Travmatol. Ortoped. im. N.N. Priorova, 2015, no. 1, pp. 35–42.

  24. Wu, X., Corona, B.T., Chen, X., and Walters, T.J., A standardized rat model of volumetric muscle loss injury for the development of tissue engineering therapies, BioRes. Open Access, 2012, vol. 1, no. 6, pp. 280–290.

    Article  CAS  Google Scholar 

  25. Arsic, N., Zacchigna, S., Zentilin, L., et al., Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo, Mol. Ther., 2004, vol. 10, pp. 844–854.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.A. Pulin and I.I. Eremin for participation in the study.

Funding

This work was supported by the Russian Science Foundation (agreement no. 18-75-10085 on August 8, 2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Komlev.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozo, I.Y., Mavlikeev, M.O., Presnyakov, E.V. et al. Gene-Activated Hydrogels Based on Sodium Alginate for Reparative Myogenesis of Skeletal Muscle. Inorg. Mater. Appl. Res. 12, 1026–1032 (2021). https://doi.org/10.1134/S2075113321040092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321040092

Keywords:

Navigation