Skip to main content
Log in

Photonic Crystal Sensors for the Composition of Liquids Based on Films with the Structure of Inverse Opal

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The possibility of using films of inverse opals made of a photoresist as sensors for the determination of the concentration of alcohols in water is studied. The analytical signal is the spectral position of the photonic stop band. The signal linearly grows with the increase in the concentration of ethylene glycol and nonlinearly but monotonically increases with the growth in the concentration of ethanol. The fabricated sensors are characterized by a sensitivity to the concentration of ethylene glycol of about 0.413 nm/wt %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Pavlichenko, I., Exner, A.T., Guehl, M., et al., Humidity-enhanced thermally tunable TiO2/SiO2 Bragg stacks, J. Phys. Chem. C, 2012, vol. 116, pp. 298–305.

    Article  CAS  Google Scholar 

  2. Du, C., Wang, Q., Zhao, Y., and Li, J., Highly sensitive temperature sensor based on an isopropanol-filled photonic crystal fiber long period grating, Opt. Fiber Technol., 2017, vol. 34, pp. 12–15.

    Article  CAS  Google Scholar 

  3. Zhao, W., Quan, M., Cao, Z., et al., Visual multi-triggered sensor based on inverse opal hydrogel, Colloids Surf., A, 2018, vol. 554, pp. 93–99.

    Article  CAS  Google Scholar 

  4. Torres, D.L., Elosua, C., Villatoro, J., et al., Photonic crystal fiber interferometer coated with a PAH/PAA nanolayer as humidity sensor, Sens. Actuators, B, 2017, vol. 242, pp. 1065–1072.

    Article  Google Scholar 

  5. Ko, Y.-L., Tsai, H.-P., Lin, K.-Y., et al., Reusable macroporous photonic crystal-based ethanol vapor detectors by doctor blade coating, J. Colloid Interface Sci., 2017, vol. 487, pp. 360–369.

    Article  CAS  Google Scholar 

  6. Kim, S., Han, S.G., Koh, Y.G., et al., Colorimetric humidity sensor using inverse opal photonic gel in hydrophilic ionic liquid, Sensors, 2018, vol. 18, art. ID 1357.

    Article  Google Scholar 

  7. Lee, K. and Asher, S.A., Photonic crystal chemical sensors: pH and ionic strength, J. Am. Chem. Soc., 2000, vol. 122, pp. 9534–9537.

    Article  CAS  Google Scholar 

  8. Zhang, M.-L., Jin, F., Zheng, M.-L., and Duan, X.-M., Inverse opal hydrogel sensor for the detection of pH and mercury ions, RSC Adv., 2014, vol. 4, pp. 20567–20572.

    Article  CAS  Google Scholar 

  9. Baumgart, J., Zvyagolskaya, M., and Bechinger, C., Tailoring of photonic band structures in colloidal crystals, Phys. Rev. Lett., 2007, vol. 99, art. ID 205503.

    Article  Google Scholar 

  10. Ozaki, M., Shimoda, Y., Kasano, M., and Yoshino, K., Electric field tuning of the stop band in a liquid-crystal-infiltrated polymer inverse opal, Adv. Mater., 2002, vol. 14, pp. 514–518.

    Article  CAS  Google Scholar 

  11. Nishijima, Y., Ueno, K., and Juodkazis, S., Inverse silica opal photonic crystals for optical sensing applications, Opt. Express, 2007, vol. 15, no. 20, pp. 12979–12988.

    Article  CAS  Google Scholar 

  12. Kuo, C.Y., Lu, S.Y., Chen, S.F., et al., Stop band shift based chemical sensing with three-dimensional opal and inverse opal structures, Sens. Actuators, B, 2007, vol. 124, no. 2, pp. 452–458.

    Article  CAS  Google Scholar 

  13. Li, J.L. and Zheng, T.S., A comparison of chemical sensors based on the different ordered inverse opal films, Sens. Actuators, B, 2008, vol. 131, no. 1, pp. 190–195.

    Article  CAS  Google Scholar 

  14. Amrehn, S., Wu, X., Schumacher, C., and Wagner, T., Photonic crystal-based fluid sensors: Toward practical application, Phys. Status Solidi A, 2015, vol. 212, no. 6, pp. 1266–1272.

    Article  CAS  Google Scholar 

  15. Lee, J., Bae, K., Kang, G., et al., Graded-lattice AAO photonic crystal heterostructure for high Q refractive index sensing, RSC Adv., 2015, vol. 5, pp. 71770–71777.

    Article  CAS  Google Scholar 

  16. Law, C.S., Lim, S.Y., and Santos, A., On the precise tuning of optical filtering features in nanoporous anodic alumina distributed Bragg reflectors, Sci. Rep., 2018, vol. 8, art. ID 4642.

    Article  Google Scholar 

  17. Ashurov, M., Gorelik, V., Napolskii, K., and Klimonsky, S., Anodic alumina photonic crystals as refractive index sensors for controlling the composition of liquid mixtures, Photonic Sens., 2020, vol. 10, no. 2, pp. 147–154. https://doi.org/10.1007/s13320‑019‑0569‑2

    Article  CAS  Google Scholar 

  18. Xu, X., Goponenko, A.V., and Asher, S.A., Polymerized polyHEMA photonic crystals: pH and Ethanol sensor materials, J. Am. Chem. Soc., 2008, vol. 130, pp. 3113–3119.

    Article  CAS  Google Scholar 

  19. Pan, Z., Ma, J., Yan, J., et al., Response of inverse-opal hydrogels to alcohols, J. Mater. Chem., 2012, vol. 22, pp. 2018–2025.

    Article  CAS  Google Scholar 

  20. Fenzl, C., Hirsch, T., and Wolfbeis, O.S., Photonic crystal based sensor for organic solvents and for solvent-water mixtures, Sensors, 2012, vol. 12, pp. 16954–16963.

    Article  CAS  Google Scholar 

  21. Holtz, J.H. and Asher, S.A., Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials, Nature, 1997, vol. 389, no. 6653, pp. 829–832.

    Article  CAS  Google Scholar 

  22. Alexeev, V.L., Das, S., Finegold, D.N., and Asher, S.A., Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid, Clin. Chem., 2004, vol. 50, no. 12, pp. 2353–2360.

    Article  CAS  Google Scholar 

  23. Zhao, Y.J., Zhao, X.W., Tang, B.C., et al., Quantum-dot-tagged bioresponsive hydrogel suspension array for multiplex label-free DNA detection, Adv. Funct. Mater., 2010, vol. 20, pp. 976–982.

    Article  Google Scholar 

  24. Cai, Z., Smith, N.L., Zhang, J.T., and Asher, S.A., Two-dimensional photonic crystal chemical and biomolecular sensors, Anal. Chem., 2015, vol. 87, pp. 5013–5025.

    Article  CAS  Google Scholar 

  25. Cai, Z., Sasmal, A., Liu, X., and Asher, S.A., Responsive photonic crystal carbohydrate hydrogel sensor materials for selective and sensitive lectin protein detection, ACS Sens., 2017, vol. 2, pp. 1474–1481.

    Article  CAS  Google Scholar 

  26. Shi, D., Zhang, X., Yang, Z., et al., Fabrication of PAM/PMAA inverse opal photonic crystal hydrogels by a “sandwich” method and their pH and solvent responses, RSC Adv., 2016, vol. 6, pp. 85885–85890.

    Article  CAS  Google Scholar 

  27. Feng, X., Xu, J., Liu, Y., and Zhao, W., Visual sensors of an inverse opal hydrogel for the colorimetric detection of glucose, J. Mater. Chem. B, 2019, vol. 7, pp. 3576–3581.

    Article  CAS  Google Scholar 

  28. Kim, D., Koh, Y.G., and Lee, W., Inverse opal photonic gel containing charge stabilized boronate anions for glucose sensing at physiological pH, Phys. Status Solidi RRL, 2019, vol. 13, art. ID 1800416.

    Article  Google Scholar 

  29. Wang, F., Zhu, Z., Xue, M., et al., Cellulose photonic crystal film sensor for alcohols, Sens. Actuators, B, 2015, vol. 220, pp. 222–226.

    Article  CAS  Google Scholar 

  30. Kou, D., Zhang, Sh., Lutkenhaus, J.L., et al., Porous organic/inorganic hybrid one-dimensional photonic crystals for rapid visual detection of organic solvents, J. Mater. Chem. C, 2018, vol. 6, pp. 2704–2711.

    Article  CAS  Google Scholar 

  31. Cong, H.L., Yu, B., Tang, J.G., et al., Current status and future developments in preparation and application of colloidal crystals, Chem. Soc. Rev., 2013, vol. 42, pp. 7774–7800.

    Article  CAS  Google Scholar 

  32. Zhao, Y., Xie, Z., Gu, H., et al., Bio-inspired variable structural color materials, Chem. Soc. Rev., 2012, vol. 41, pp. 3297–3317.

    Article  CAS  Google Scholar 

  33. Klimonsky, S.O., Abramova, V.V., Sinitskii, A.S., and Tretyakov, Yu.D., Photonic crystals based on opals and inverse opals: Synthesis and structural features, Russ. Chem. Rev., 2011, vol. 80, no. 12, pp. 1191–1207. https://doi.org/10.1070/RC2011v080n12ABEH004237

    Article  CAS  Google Scholar 

  34. Tuyen, L.D., Wu, C.Y., Anh, T.K., et al., Fabrication and optical characterisation of SiO2 opal and SU-8 inverse opal photonic crystals, J. Exp. Nanosci., 2012, vol. 7, no. 2, pp. 198–204.

    Article  CAS  Google Scholar 

  35. Ashurov, M.S., Bakhia, T., Saidzhonov, B.M., and Klimonsky, S.O., Preparation of inverse photonic crystals by ETPTA photopolymerization method and their optical properties, J. Phys.: Conf. Ser., 2020, vol. 1461, art. ID 012009.

    CAS  Google Scholar 

  36. Klimonsky, S.O., Bakhia, T., Knotko, A.V., and Lukashin, A.V., Synthesis of narrow-dispersed SiO2 colloidal particles and colloidal crystal films based on them, Dokl. Chem., 2014, vol. 457, no. 1, pp. 115–117. https://doi.org/10.1134/S0012500814070027

    Article  CAS  Google Scholar 

  37. Jiang, P., Bertone, J.F., Hwang, K.S., and Colvin, V., Single-crystal colloidal multilayers of controlled thickness, Chem. Mater., 1999, vol. 11, pp. 2132–2140.

    Article  CAS  Google Scholar 

  38. Bakhia, T., Baranchikov, A.E., Gorelik, V.S., and Klimonsky, S.O., Local optical spectroscopy of opaline photonic crystal films, Crystallogr. Rep., 2017, vol. 62, no. 5, pp. 783–786. https://doi.org/10.1134/S1063774517050029

    Article  CAS  Google Scholar 

  39. Ozin, G.A. and Arsenault, A.C., P-Ink and Elast-Ink from lab to market, Mater. Today, 2008, vol. 11, no. 7, pp. 44–51.

    Article  CAS  Google Scholar 

  40. Kratkii spravochnik fiziko-khimicheskikh velichin (Quick Reference of Physical and Chemical Quantities), Ravdel’, A.A. and Ponomareva, A.M., Eds., Moscow: ARIS, 2010.

Download references

ACKNOWLEDGMENTS

We are grateful to A.E. Baranchikov for the electron microscopic analysis of the samples.

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 19‑33‑90266_aspiranty).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Klimonsky.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashurov, M.S., Ikrami, S.A. & Klimonsky, S.O. Photonic Crystal Sensors for the Composition of Liquids Based on Films with the Structure of Inverse Opal. Inorg. Mater. Appl. Res. 12, 915–921 (2021). https://doi.org/10.1134/S2075113321040043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321040043

Keywords:

Navigation