Skip to main content
Log in

Compaction Curve of Powdered Fillers and Calculation of Composition of Dispersion-Filled Polymer Composites with Various Structure and Properties

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Key principles of calculation of generalized parameters of dispersion-filled polymer composite materials (DFPCM) are discussed in this work. It is demonstrated that investigation of the process of compacting of particulate fillers under pressure and plotting of a compaction curve for them with determination of the parameter φm are a reference point for development of all possible compositions of DFPCM with various types of structures. This provides the means for carrying out classification of dispersion systems by the structure principle, properties, and methods of their conversion into products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kablov, E.N., Innovative developments of the All-Russian Scientific Research Institute of Aviation Materials within the project “Strategic development of materials and technologies for their processing until 2030,” Aviats. Mater. Tekhnol., 2015, no. 1 (34), pp. 3–33. https://doi.org/10.18577/2071-9140-2015-0-1-3-33

  2. Kablov, E.N., Materials and chemical technologies for aircraft engineering, Herald Russ. Acad. Sci., 2012, vol. 82, no. 3, pp. 158–167.

    Article  Google Scholar 

  3. Kablov, E.N., Airspace material science, Vse Mater., 2008, no. 3, pp. 2–14.

  4. Mashkov, Y.K., Kropotin, O.V., Shil’ko, S.V., et al., The formation of structure and properties of antifriction composites via modification of polytetrafluoroethylene with polydispersive fillers, Inorg. Mater.: Appl. Res., 2015, vol. 6, no. 4, pp. 289–292.

    Article  Google Scholar 

  5. Gunyaeva, A.G., Chursova, L.V., Cherfas, L.V., et al., Lightning resistant carbon plastics modified with carbon nanoparticles obtained by infusion molding, Vse Mater., 2015, no. 10, pp. 25–32.

  6. Kablov, E.N., New generation materials, Zashch. Bezop., 2014, no. 4, pp. 28–29.

  7. Raskutin, A.E., Russian new polymer composite materials: development and implementation in advanced developed constructions, Aviats. Mater. Tekhnol., 2017, suppl., pp. 242–263.https://doi.org/10.18577/2071-9140-2017-0-S-349-367

  8. Kablov, E.N., Semenova, L.V., Petrova, G.N., et al., Polymer composite materials on a thermoplastic matrix, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2016, vol. 59, no. 10, pp. 61–71.

    CAS  Google Scholar 

  9. Kablov, E.N., Sartsev, V.O., and Inozemtsev, A.A., Moisture saturation of structurally similar elements from polymer composite materials in natural climatic conditions with the imposition of thermal cycles, Aviats. Mater. Tekhnol., 2017, no. 2, pp. 56–68. https://doi.org/10.18577/2071-9140-2017-0-2-56-68

  10. Lavrov, A.V., Erasov, V.S., Podzhivotov, N.Yu., et al., Optimization of the structure of hybrid composite materials for aviation, Tr. Vseross. Nauchno-Issled. Inst. Aviats. Mater., 2016, no. 11, art. 7. https://doi.org/10.18577/2307-6046-2016-0-11-7-7. http://www.viam-works.ru. Accessed November 6, 2019.

  11. Veshkin, E.A., Satdinov, R.A., Postnov, V.I., et al., Modern polymer materials for the manufacture of systemic elements, Tr. Vseross. Nauchno-Issled. Inst. Aviats. Mater., 2017, no. 12, art. 6. https://doi.org/10.18577/2307-6046-2017-0-12-6-6. http://www.viam-works.ru. Accessed November 7, 2019.

  12. Subbotin, V.A., Kolotilov, Yu.V., and Smirnova, V.Yu., Evaluation of performance of pipelines taking into account the physical and mechanical properties of construction materials, Vse Mater., 2017, no. 1, pp. 42–48.

  13. Nuzhnyi, G.A., Grinevich, D.V., Buznik, V.M., et al., Effect of position and content of a basalt filler on the mechanical characteristics of composite materials based on an ice matrix, Inorg. Mater.: Appl. Res., 2020, vol. 11, no. 4, pp. 872–878.

    Article  Google Scholar 

  14. Ovdak, O.V., Kalinin, Y.E., Kudrin, A.M., et al., The influence of content of reinforcing filler on mechanical properties of carbon-glass fiber reinforced plastics in matrix T-107, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 1, pp. 108–113.

    Article  Google Scholar 

  15. Cherepanin, R.N., Nuzhnyi, G.A., Razomasov, N.A., et al., Physicomechanical properties of glacial composite materials reinforced by Rusar-S fibers, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 1, pp. 114–120.

    Article  Google Scholar 

  16. Zheleznyak, V.G., Chursova, L.V., Merkulova, Yu.I., et al., Binders for polymer composite materials with higher fracture viscosity, Klei, Germetiki, Tekhnol., 2015, no. 1, pp. 26–28.

  17. Kochergin, Yu.S., Grigorenko, T.I., and Wang, N., Physicomechanical properties of binders based on mixtures of epoxy polymers and oligosulfons, Polym. Sci., Ser. D, 2020, vol. 13, no. 2, pp. 129–135.

    CAS  Google Scholar 

  18. Mukhametov, R.R., Petrova, A.P., and Akhmadieva, K.R., Influence of fibrous filler on the curing and the structure of the cured binder in the composition of polymer composite materials, Vse Mater., 2019, no. 5, pp. 12–18.

  19. Simonov-Emel’yanov, I.D., Trofimicheva, L.Z., and Kuleznev, V.N., Generalized parameters of the dispersed structure of filled polymers, Plast. Massy, 1989, no. 1, pp. 19–22.

  20. Simonov-Emel’yanov, I.D., The structures in dispersed-filled polymers and properties of composite materials, Plast. Massy, 2015, nos. 9–10, pp. 29–36.

  21. Simonov-Emel’yanov, I.D., Lattice parameters and structure of disperse-filled polymer composite materials with an adjustable properties, Konst. Kompoz. Mater., 2019, no. 3, pp. 37–46.

  22. Gennes, P.-G., Scaling Concepts in Polymer Physics, Ithaca, NY: Cornell Univ. Press, 1979.

    Google Scholar 

  23. Shklovskii, B.I. and Efros, A.L., Percolation theory and conductivity of strongly inhomogeneous media, Sov. Phys. Usp., 1975, vol. 18, no. 11, pp. 845–862.

    Article  Google Scholar 

  24. Handbook of Fillers and Reinforcements for Plastics, Katz, H.S. and Milewski, J.V., Eds., New York: Van Nostrand Reinhold, 1978.

    Google Scholar 

  25. Nicolis, G. und Prigogine, I., Self‑Organization in Nonequilibrium Systems: From Dissipative Structures, New York: Wiley, 1977.

    Google Scholar 

  26. Simonov-Emel’yanov, I.D., Shembel’, N.L., Proko-pov, N.I., et al., Metody tekhnologicheskikh svoistv napolnitelei i polimernykh materialov (Technological Properties of fillers and Polymeric Materials), Moscow: Mosk. Gos. Univ. Tonkikh Khim. Tekhnol. im. M.V. Lomonosova, 2014.

  27. Volokonnaya tekhnologiya pererabotki termoplastichnykh kompozitsionnykh materialov (Fiber Technology for Processing Thermoplastic Composites), Golovkin, G.S., Ed., Moscow: Mosk. Aviats. Inst., 1993.

    Google Scholar 

  28. Simonov-Emel’yanov, I.D., Sokolov, S.V., Shalgu-nov, S.I., et al., Compaction of dispersed, fibrous, and layered fillers under pressure and the structure of polymer composite materials, Plast. Massy, 2007, no. 3, pp. 10–13.

  29. Antsiferov, V.N. and Perel’man, V.E., Mekhanika protsessov poroshkovykh i kompozitsionnykh mateerialov (Mechanics of Pressing of Powder and Composite Materials), Moscow: Graal’, 2001.

  30. Simonov-Emel’yanov, I.D. and Kuleznev, V.N., Printsipy sozdaniya polimernykh kompozitsionnykh materialov: uchebnoe posobie (Creation of Polymer Composite Materials: Manual), Moscow: Mosk. Inst. Khim. Mashinostr., 1985.

  31. Mechanics of Cellular Plastics, Hilyard, N.C., Ed., New York: Macmillan, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Simonov-Yemel’yanov.

Additional information

Translated by G. Levina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonov-Yemel’yanov, I.D., Pykhtin, A.A. Compaction Curve of Powdered Fillers and Calculation of Composition of Dispersion-Filled Polymer Composites with Various Structure and Properties. Inorg. Mater. Appl. Res. 12, 151–158 (2021). https://doi.org/10.1134/S2075113321010391

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321010391

Keywords:

Navigation