Skip to main content
Log in

The Effect of Pulsed Nanosecond Laser Irradiation on the Corrosion Resistance of Mg–Al–Zn Magnesium Alloy

  • EFFECT OF ENERGY FLUXES ON MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The corrosion resistance of Mg–Al–Zn magnesium alloy with coarse-grained and ultrafine-grained structures before and after the treatment of the surface of the alloy with pulsed nanosecond laser irradiation is studied. It is found that this treatment significantly increases the resistance of the alloy to its dissolution in a 0.9% NaCl saline only under the condition of preliminary formation of a uniform ultrafine-grained structure in the bulk of the sample. The observed effect can be considered as a promising method for the treatment of the surface of medical devices made of biodegradable magnesium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Magnesium Technology 2018, Orlov, D., Joshi, V., Solanki, K., and Neelameggham, N.R., Eds., New York: Springer-Verlag, 2018.

    Google Scholar 

  2. Kutnii, K.V., Nanostructured materials based on pure titanium and biosoluble magnesium alloy for surgical implants, Elektron. Svyaz, 2011, vol. 4, nos. 11–12, pp. 758–775.

  3. Kainer, K.U., Magnesium: Alloys and Technology, New York: Willey, 2003.

    Book  Google Scholar 

  4. Jingtao, C., Research of magnesium-based alloys for medical applications, Proc. 2nd Int. Conf. on Education Technology and Information System (ICETIS 2014), Jinan, China, Wang, L.G., Ed., Amsterdam: Atlantis, 2014, pp. 623–635.

  5. Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C.J., and Windhagen, H., In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials, 2005, vol. 26, pp. 3557–3563.

    Article  CAS  Google Scholar 

  6. Papirov, I.I., Shkuropatenko, V.A., Shokurov, V.S., and Pikapov, A.I., Materialy meditsinskikh stentov: Obzor (Medical Stents Materials: Overview), Kharkov: Khar’sk. Fiz.-Tekh. Inst., 2010.

  7. Waksman, R., Erbel, R., Di Mario C., Bartunek, J., Bruyne, B., Eberli, F.R., Erne, P., Haude, M., Horrigan, M., Ilsley, C., Bose, D., Bonnier, H., Koolen, J., Luscher, T.F., and Weissman, N.J., Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries, JACC: Cardiovasc. Interventions, 2009, vol. 2, no. 4, pp. 312–320.

    Google Scholar 

  8. Eggebrecht, H., Rodermann, J., Hunold, P., Schmermund, A., Bose, D., Haude, M., and Erbel, R., Novel magnetic resonance-compatible coronary stent: The absorbable magnesium-alloy stent, Circulation, 2005, vol. 112, pp. 303–304.

    Article  Google Scholar 

  9. Zijian, L., Gu, X., Lou, S., Zheng, Y., and Zheng, Y.F., The development of binary Mg–Ca alloys for use as biodegradable materials within bone, Biomaterials, 2008, vol. 29, pp. 1329–1344.

    Article  Google Scholar 

  10. Gu, X.N., Xie, X.H., Li, N., Zheng, Y.F., and Qin, L., In vitro and in vivo studies on a Mg–Sr binary alloy system developed as a new kind of biodegradable metal, Acta Biomater., 2012, vol. 8, pp. 2360–2374.

    Article  CAS  Google Scholar 

  11. Agarwal, S., Curtin, J., Duffy, D., and Jaiswal, S., Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications, Mater. Sci. Eng., C, 2016, vol. 68, pp. 948–963.

    Article  CAS  Google Scholar 

  12. Kolobov, Yu.R., Technologies for the formation of medical implants based on titanium alloys with bioactive coatings, Nanotechnol. Russ., 2009, vol. 4, nos. 11–12, pp. 758–775.

  13. Bozhko, S.A., Kolobov, Yu.R., and Betsofen, S.Ya., Improvement of commercial Mg–Al–Zn–Mn alloys by rolling, Proc. 2015 Int. Conf. on Structural, Mechanical and Material Engineering, Amsterdam: Atlantis, 2015. https://doi.org/10.2991/icsmme-15.2015.7

  14. Kolobov, Yu.R., Golosov, E.V., Vershinina, T.N., Zhidkov, M.V., Ionin, A.A., Kudryashov, S.I., Makarov, S.V., Seleznev, L.V., Sinitsyn, D.V., and Ligachev, A.E. Structural transformation and residual stresses in surface layers of α + β titanium alloys nanotextured by femtosecond laser pulses, Appl. Phys. A: Mater. Sci. Process., 2015, vol. 119, no. 1, pp. 241–247.

    Article  CAS  Google Scholar 

  15. Elkin, V.N., Malinskii, T.V., Mikolutskii, S.I., Khasaya, R.R., Khomich, Yu.V., and Yamshchikov, V.A., Effect of nanosecond laser irradiation on the surface structure of metal alloys, Fiz. Khim. Obrab. Mater., 2016, no. 6, pp. 5–12.

  16. Ali, N., Bashir, S., and Chaudhry, U., Study of variation in surface morphology, chemical composition, crystallinity and hardness of laser irradiated silver in dry and wet environments, Opt. Laser Technol., 2017, vol. 92, pp. 173–181.

    Article  CAS  Google Scholar 

  17. Li, X., Yuan, C., Yang, H., and Jiawen, L., Morphology and composition on Al surface irradiated by femtosecond laser pulses, Appl. Surf. Sci., 2010, vol. 256, pp. 4344–4349.

    Article  CAS  Google Scholar 

  18. Ionin, A.A., Kudryashov, S.I., and Samokhin, A.A., Material surface ablation produced by ultrashort laser pulses, Phys.-Usp., 2017, vol. 60, pp. 149–160.

    Article  CAS  Google Scholar 

  19. Betsofen, S.Ya., Bozhko, S.A., and Kolobov, Yu.R., RF Patent 2631574, Byull. Izobret., 2017, no. 27.

  20. Ageev, E.I., Andreeva, Ya.M., Karlagina, Yu.Yu., Kolobov, Yu.R., Manokhin, S.S., Odintsova, G.V., and Veiko, V.P., Composition analysis of oxide films formed on titanium surface under pulsed laser action by method of chemical thermodynamics, Laser Phys., 2017, vol. 27, no. 4, p. 9.

    Article  Google Scholar 

  21. Feng, H., Liu, S., Du, Y., Lei, T., Zeng, R., and Yuan, T., Effect of the second phases on corrosion behavior of the Mg–Al–Zn alloys, J. Alloys Compd., 2017, vol. 695, pp. 2330–2338.

    Article  CAS  Google Scholar 

  22. Candan, S. and Candan, E., Comparative study on corrosion behaviors of Mg–Al–Zn alloys, Trans. Nonferrous Met. Soc. China, 2018, vol. 28, no. 4, pp. 642–650.

    Article  CAS  Google Scholar 

  23. Manivasagam, G. and Suwas, S., Biodegradable Mg and Mg based alloys for biomedical implants, Mater. Sci. Technol., 2014, vol. 30, no. 5, pp. 515–520.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. Yu.R. Kolobov and Prof. V.P. Veiko for the participation in the discussion of the results and useful comments upon their analysis and to Prof. S.Ya. Betsofen for the participation in the development of the methods for the formation of ultrafine-grained structures in the studied magnesium alloys.

Funding

This work was financially supported by the Ministry of Education and Science of the Russian Federation as part of a state task for institutions of higher education, project code no. 3.3144.2017/4.6, and thematic map of the Institute of Problems of Chemical Physics, Russian Academy of Sciences, no. 0089-2019-0017 in part related to the testing of the procedure for the studies of the fine structure on a Quanta NOVA NanoSEM 450 microscope with field electron emission and a scanning transmission microscopy (STEM) detector.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Bozhko, S. S. Manokhin, A. Yu. Tokmacheva-Kolobova, Yu. Yu. Karlagina or A. E. Ligachev.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozhko, S.A., Manokhin, S.S., Tokmacheva-Kolobova, A.Y. et al. The Effect of Pulsed Nanosecond Laser Irradiation on the Corrosion Resistance of Mg–Al–Zn Magnesium Alloy. Inorg. Mater. Appl. Res. 11, 547–551 (2020). https://doi.org/10.1134/S2075113320030077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320030077

Keywords:

Navigation