Skip to main content
Log in

Study of the Microscopic Origins of Radiation Hardening of Ferritic-Martensitic Steels RUSFER-EK-181 and ChS-139 in the Simulation Experiment with Heavy Ion Irradiation

  • MATERIALS OF POWER ENGINEERING AND RADIATION-RESISTANT MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The comprehensive study of radiation hardening of the ferritic-martensitic steels RUSFER-EK-181 (Fe–12 Cr–2 W–V–Ta–B–0.16 С) and ChS-139 (Fe–12 Cr–Ni–Mo–W–Nb–V–N–B–0.20 C) using Fe ion irradiation at temperatures of 250–400°С to damage doses of ~6 dpa is conducted. The quantitative analysis of radiation-induced changes in the RUSFER-EK-181 and ChS-139 steel microstructure is performed by transmission electron microscopy and atom probe tomography. The study of hardening of steel samples irradiated with ions by nanoindentation and the evaluation within the framework of the dispersed barrier model show that the detected radiation-induced clusters and dislocation loops play an important role in the low-temperature radiation hardening of the RUSFER-EK-181 and ChS-139 steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. van der Schaaf, B., Tavassoli, F., Fazio, C., Rigal, E., Diegele, E., Lindau, R., and LeMarois, G., The development of EUROFER reduced activation steel, Fusion Eng. Des., 2003, vol. 69, pp. 197–203.

    Article  CAS  Google Scholar 

  2. Klueh, R.L., Hashimoto, N., and Maziasz, P.J., New nanoparticle-strengthened ferritic/martensitic steels by conventional thermo-mechanical treatment, J. Nucl. Mater., 2007, vols. 367–370, pp. 48–53.

  3. Ioltukhovskiy, A.G., Leonteva-Smirnova, M.V., Solonin, M.I., Chernov, V.M., et al., Heat resistant reduced activation 12% Cr steel of 16Cr12W2VTaB type-advanced structural material for fusion and fast breeder power reactors material, J. Nucl. Mater., 2002, vol. 307–311, pp. 532–535.

  4. Leontyeva-Smirnova, M.V., Agafonov, A.N., Ermolaev, G.N., et al., Microstructure and mechanical properties of low-activation ferritic–martensitic EK181 steel, Perspekt. Mater., 2006, no. 6, pp. 40–52.

  5. Gaganidze, E., Petersen, C., Materna-Morris, E., et al., Mechanical properties and TEM examination of RAFM steels irradiated up to 70 dpa in BOR-60, J. Nucl. Mater., 2011, vol. 417, pp. 93–98.

    Article  CAS  Google Scholar 

  6. Petersen, C., Povstyanko, A., Prokhorov, V., Fedoseev, A., Makarov, O., and Dafferner, B., Impact property degradation of ferritic/martensitic steels after the fast reactor irradiation ‘ARBOR 1,’ J. Nucl. Mater., 2007, vols. 367–370, pp. 544–549.

  7. Gaganidze, E., Dafferner, B., Ries, H., Rolli, R., Schneider, H.-C., and Aktaa, J., Irradiation Programme HFR Phase IIb–SPICE Impact Testing on up to 16.3 dpa Irradiated RAFM Steels. Final Report for Task TW2-TTMS 001b-D05, Karlsruhe: Forschungszentrum, 2008.

    Google Scholar 

  8. Materna Morris, E., Möslang, A., Rolli, R., and Schneider, H.C., Effect of helium on tensile properties and microstructure in 9% Cr–WVTa–steel after neutron irradiation up to 15 dpa between 250 and 450°C, J. Nucl. Mater., 2009, vols. 386–388, pp. 422–425.

  9. Rogozhkin, S.V., Nikitin, A.A., Khomich, A.A., Lukyanchuk, A.A., Raznitsyn, O.A., Shutov, A.S., Fedin, P.A., Kulevoy, T.V., Vasiliev, A.L., Presniakov, M.Yu., Möslang, A., Lindau, R., and Vladimirov, P., The influence of Fe-ion irradiation on the microstructure of reduced activation ferritic-martensitic steel Eurofer 97, Nucl. Fusion, 2019, vol. 59, art. ID 086018.

    Article  CAS  Google Scholar 

  10. Dvoriashin, A.M., Porollo, S.I., Konobeev, Yu.V., and Garner, F.A., Influence of high dose neutron irradiation on microstructure of EP-450 ferritic–martensitic steel irradiated in three Russian fast reactors, J. Nucl. Mater., 2004, vols. 329–333, pp. 319–323.

  11. Mathon, M.H., De Carlan, Y., Geoffroy, G., Averty, X., Alamo, A., and De Novion, C.H., A SANS investigation of the irradiation-enhanced α–α' phases separation in 7–12 Cr martensitic steels, J. Nucl. Mater., 2003, vol. 312, pp. 236–248.

    Article  CAS  Google Scholar 

  12. Jiao, Z., Taller, S., Field, K., et al., Microstructure evolution of T91 irradiated in the BOR60 fast, J. Nucl. Mater., 2018, vol. 504, pp. 122–134.

    Article  CAS  Google Scholar 

  13. Voevodin, V. and Nekludov, I., Evolyutsiya strukturnofazovogo sostoyaniya i radiatsionnaya stoykost konstruktsionnykh materialov (Evolution of Structural Phase State and Radiation Resistance of Constructional Materials), Kiev: Naukova Dumka, 2006.

  14. Was, G.S., Fundamentals of Radiation Materials Science, Berlin: Springer-Verlag, 2007.

    Google Scholar 

  15. Rogozhkin, S.V., Nikitin, A.A., Khomich, A.A., Iskandarov, N.A., Khoroshilov, V.V., Bogachev, A.A., Lukyanchuk, A.A., Raznitsyn, O.A., Shutov, A.S., Fedin, P.A., Kuibeda, R.P., Kulevoy, T.V., Vasiliev, A.L., Presniakov, M.Yu., Kravchuk, K.S., et al., Emulation of radiation damage of structural materials for fission and fusion power plants using heavy ion beams, Phys. At. Nucl., 2019, no. 9, pp. 1239–1251.

  16. Stoller, R.E., Toloczko, M.B., Was, G.S., Certain, A.G., Dwaraknath, S., and Garner, F.A., On the use of SRIM for computing radiation damage exposure, Nucl. Instrum. Methods Phys. Res.,Sect. B, 2013, vol. 310, pp. 75–80.

    CAS  Google Scholar 

  17. Rogozhkin, S.V., Aleev, A.A., Lukyanchuk, A.A., Shutov, A.S., Raznitsyn, O.A., and Kirillov, S.E., An atom probe tomography prototype with laser evaporation, Instrum. Exp. Techn., 2017, vol. 60, no. 3, pp. 428–433.

    Article  Google Scholar 

  18. Rogozhkin, S.V., Iskandarov, N.A., Nikitin, A.A., Bogachev, A.A., Khomich, A.A., Khoroshilov, V.V., Lukyanchuk, A.A., Raznitsyn, O.A., Shutov, A.S., Fedin, P.A., Kulevoy, T.V., Leontyeva-Smirnova, M.V., and Mozhanov, E.M., Effect of low-temperature ion irradiation on the nanostructure of 12% chromium ChS-139 steel, Inorg. Mater.: Appl. Res., 2019, vol. 10, no. 5, pp. 1078–1084.

    Article  Google Scholar 

  19. Rogozhkin, S.V., Iskandarov, N.A., Aleev, A.A., Zaluzhnyi, A.G., Kuibida, R.P., Kulevoi, T.V., Chalykh, B.B., Leont’eva-Smirnova, M.V., and Mozhanov, E.M. Investigation of the influence of irradiation with Fe ions on the nanostructure of ferritic martensitic steel EK-181, Inorg. Mater.: Appl. Res., 2013, vol. 4, no. 5, pp. 426–430.

    Article  Google Scholar 

  20. Rogozhkin, S.V., Iskandarov, N.A., Lukyanchuk, A.A., Shutov, A.S., Raznitsyn, O.A., Nikitin, A.A., Zaluzhnyi, A.G., Kulevoy, T.V., Kuibida, R.P., Anfrianov, S.L., Leontyeva-Smirnova, M.V., Mozhanov, E.M., and Nikitina, A.A., Study of nanostructure of ferritic-martensitic steel ChS-139 in initial state and after Fe ion irradiation, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 2, pp. 231–238.

    Article  Google Scholar 

  21. Lucas, G.E., The evolution of mechanical property change in irradiated austenitic stainless steels, J. Nucl. Mater., 1993, vol. 206, pp. 287–305.

    Article  CAS  Google Scholar 

  22. Bergner, F., Pareige, C., Hernández-Mayoral, M., Malerba, L., and Heintze, C. Application of a three-feature dispersed-barrier hardening model to neutron-irradiated Fe–Cr model alloys, J. Nucl. Mater., 2014, vol. 448, pp. 96–102.

    Article  CAS  Google Scholar 

  23. Busby, J.T., Hash, M.C., and Was, G.S., The relationship between hardness and yield stress in irradiated austenitic and ferritic steels, J. Nucl. Mater., 2005, vol. 336, pp. 267–278.

    Article  CAS  Google Scholar 

  24. Li, X. and Bhushan, B., A review of nanoindentation continuous stiffness measurement technique and its applications, Mater. Charact., 2002, vol. 48, pp. 11–36.

    Article  CAS  Google Scholar 

  25. Nix, W.D. and Gao, H., Indentation size effects in crystalline materials: A law for strain gradient plasticity, J. Mech. Phys. Solids, 1998, vol. 46, pp. 411–425.

    Article  CAS  Google Scholar 

  26. Kuleshova, E.A., Gurovich, B.A., Bukina, Z.V., Frolov, A.S., Maltsev, D.A., Krikun, E.V., Zhurko, D.A., and Zhuchkov, G.M., Mechanisms of radiation embrittlement of VVER-1000 RPV steel at irradiation temperatures of (50–400)°C, J. Nucl. Mater., 2017, vol. 490, pp. 247–259.

    Article  CAS  Google Scholar 

  27. Klueh, R.L., Alexander, D.J., and Maziasz, P.J., Impact behavior of reduced-activation ferritic steels irradiated in the Fast Flux Test Facility, J. Nucl. Mater., 1992, vol. 186, pp. 185–195.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The irradiation of samples and tomographic atom probe analysis were performed on the equipment of the KAMIKS Shared Access Center (http://kamiks.itep.ru/) of the National Research Center Kurchatov Institute—ITEP; preparation of samples by focused ion beam methods was performed on the equipment of the Resource Center NANOZOND of the National Research Center Kurchatov Institute (http://www.rc.nrcki.ru/pages/main/nanozond/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rogozhkin.

Ethics declarations

This study was carried out with a grant from the Russian Science Foundation (project no. 17-19-01696).

Additional information

Translated by A. Kolemesin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogozhkin, S.V., Iskandarov, N.A., Nikitin, A.A. et al. Study of the Microscopic Origins of Radiation Hardening of Ferritic-Martensitic Steels RUSFER-EK-181 and ChS-139 in the Simulation Experiment with Heavy Ion Irradiation. Inorg. Mater. Appl. Res. 11, 359–365 (2020). https://doi.org/10.1134/S207511332002032X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207511332002032X

Keywords:

Navigation