Skip to main content
Log in

Degradation of Fuel Cladding Materials Based on Zirconium after Operation in VVER-Type Reactors

  • RADIATION MATERIALS SCIENCE
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The paper presents microstructural studies of specimens cut from fuel elements made of E110 spongy zirconium-based alloy after operation in a VVER-1000 before reaching the burnup of ~35 MWd/kg U. As a result of exposure to high temperatures and neutron irradiation, significant changes in the phase composition of fuel cladding materials appear: change in the size, density, and composition of β-Nb particles; change in the composition of the Laves phase; formation of dislocation loops of α type, as well as δ and γ hydrides. The main structural elements determining the degradation of the mechanical properties of the E110 alloy under irradiation are dislocation loops and fine-phase precipitates owing to their relatively large density. The data obtained can be used to construct dose dependences of microstructural changes with the aim of predicting the residual life of claddings and fuel assemblies as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Yang, W.J.S., Tucker, R.P., Cheng, B., and Adamson, R.B., Precipitates in zircaloy: Identification and the effects of irradiation and thermal treatment, J. Nucl. Mater., 1986, vol. 138, nos. 2–3, pp. 185–195.

    Article  CAS  Google Scholar 

  2. Griffiths, M., Gilbert, R.W., and Carpenter, G.J.C., Phase instability, decomposition, and redistribution of intermetallic precipitates in zircaloy-2 and -4 during neutron irradiation, J. Nucl. Mater., 1987, vol. 150, no. 1, pp. 53–66.

    Article  CAS  Google Scholar 

  3. Griffiths, M., A review of microstructure evolution in zirconium alloys during irradiation, J. Nucl. Mater., 1988, vol. 159, pp. 190–218.

    Article  CAS  Google Scholar 

  4. Yang, W.J.S., Precipitate stability in neutron-irradiated zircaloy-4, J. Nucl. Mater., 1988, vol. 158, pp. 71–80.

    Article  CAS  Google Scholar 

  5. Svetukhin, V.V., L’vov, P.E., Novoselov, A.E., Kobylyanskii, G.P., and Shishov, V.N., Modeling the growth of niobium precipitates in the Zr–1% Nb alloy under irradiation, Izv. Vyssh. Uchebn. Zaved., Povolzh. Reg. Fiz.-Mat. Nauki, 2007, no. 4, pp. 105–111.

  6. Kobilyanskyi, G.P., Novoselov, A.E., Obukhov, A.V., Ostrovskyi, Z.E., Shishov, V.N., Nikulina, A.V., and Markelov, V.A., Radiation damage of alloy E635 in structural elements of FA of WWER-1000, Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Povrezhdenii Radiats. Materialoved., 2009, no. 2, pp. 57–68.

  7. Novikov, V.V., Markelov, V.A., Tselishchev, A.V., Konkov, V.F., Sinelnikov, L.P., and Panchenko, V.L., Structure-phase changes and corrosion behavior of e110 and e635 claddings of fuels in water cooled reactors, J. Nucl. Sci. Technol., 2006, vol. 43, no. 9, pp. 991–997.

    Article  CAS  Google Scholar 

  8. Markelov, V.A., On correlation of composition, structural-phase state, and properties of E635 zirconium alloy, Inorg. Mater.: Appl. Res., 2010, vol. 1, no. 3, pp. 245–253.

    Article  Google Scholar 

  9. Dong, Q., Yu, H., Yao, Z., Long, F., Balogh, L., and Daymond, M.R. Study of microstructure and precipitates of a Zr–2.5Nb–0.5Cu CANDU spacer material, J. Nucl. Mater., 2016, vol. 481, pp. 153–163.

    Article  CAS  Google Scholar 

  10. Doriot, S., Onimus, F., Gilbon, D., Mardon, J.P., and Bourlier, F., Transmission electron microscopy study of second phase particles irradiated by 2 MeV protons at 350°C in Zr alloys, J. Nucl. Mater., 2017, vol. 494, pp. 398–410.

    Article  CAS  Google Scholar 

  11. Shindō, D. and Oikawa, T., Analytical Electron Microscopy for Materials Science, New York: Springer-Verlag, 2002.

    Book  Google Scholar 

  12. Malis, T., Cheng, S.C., and Egerton, R.F., EELS log-ratio technique for specimen-thickness measurement in the TEM, J. Electron Microsc. Tech., 1988, vol. 8, no. 2, pp. 193–200.

    Article  CAS  Google Scholar 

  13. Yang, Y.-Y. and Egerton, R.F., Tests of two alternative methods for measuring specimen thickness in a transmission electron microscope, Micron, 1995, vol. 26, no. 1, pp. 1–5.

    Article  Google Scholar 

  14. Zhang, H.-R., Egerton, R.F., and Malac, M., Local thickness measurement through scattering contrast and electron energy-loss spectroscopy, Micron, 2012, vol. 43, no. 1, pp. 8–15.

    Article  CAS  Google Scholar 

  15. Egerton, R.F. and Cheng, S.C., Measurement of local thickness by electron energy-loss spectroscopy, Ultramicroscopy, 1987, vol. 21, no. 3, pp. 231–244.

    Article  Google Scholar 

  16. Iakoubovskii, K., Mitsuishi, K., Nakayama, Y., and Furuya, K., Thickness measurements with electron energy loss spectroscopy, Microsc. Res. Tech., 2008, vol. 71, no. 8, pp. 626–631.

  17. Saltykov, S.A., Stereometricheskaya metallografiya (Stereometric Metallography), Moscow: Metallurgiya, 1976.

  18. Bell, D.C. and Garratt-Reed, A.J., Energy Dispersive X‑ray Analysis in the Electron Microscope, Oxford: Bios Scientific, 2003.

    Google Scholar 

  19. Williams, D.B. and Carter, C.B., Transmission Electron Microscopy: A Textbook for Materials Science, New York: Springer-Verlag, 2009, vol. 1.

    Book  Google Scholar 

  20. Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas, Ahn, C.C., Ed., New York: Wiley, 2006.

    Google Scholar 

  21. Kurata, H., Isoda, S., and Kobayashi, T., Chemical mapping by energy-filtering transmission electron microscopy, J. Electron Microsc., 1996, vol. 45, no. 4, pp. 317–320.

    Article  CAS  Google Scholar 

  22. Frolov, A.S., Krikun, E.V., Prikhodko, K.E., and Kuleshova, E.A., Development of the DIFFRACALC program for analyzing the phase composition of alloys, Crystallogr. Rep., 2017, vol. 62, no. 5.

  23. Kuleshova, E.A., Frolov, A.S., Maltsev, D.A., Safo-nov, D.V., Krikun, E.V., and Fedotova, S.V., Structure and phase composition of zirconium fuel claddings in initial state and after creep tests, Proc. 15th Int. School-Conf. “New Materials—Materials of Innovative Energy: Development,Characterization Methods, and Application,” Moscow, 2017.

    Google Scholar 

  24. Yang, H.L., Matsukawa, Y., Kano, S., Duan, Z.G., Murakami, K., and Abe, H., Investigation on microstructural evolution and hardening mechanism in dilute Zr–Nb binary alloys, J. Nucl. Mater., 2016, vol. 481, pp. 117–124.

    Article  CAS  Google Scholar 

  25. Doriot, S., Verhaeghe, B., Béchade, J.-L., Menut, D., Gilbon, D., Mardon, J.-P., Cloué, J.-M., Miquet, A., and Legras, L., STP1543: Microstructural evolution of M5TM7 alloy irradiated in PWRs up to high fluencies—comparison with other Zr-based alloys, in Zirconium in the Nuclear Industry, Comstock, B. and Barberis, P., Eds., West Conshohocken, PA: ASTM Int., 2015, pp. 759–799.

    Google Scholar 

  26. Kiran Kumar, N.A.P. and Szpunar, J.A., EBSD studies on microstructure and crystallographic orientation of delta-hydrides in zircaloy-4, Zr–1% Nb and Zr–2.5% Nb, Mater. Sci. Eng., A, 2011, vol. 528, no. 21, pp. 6366–6374.

    Article  CAS  Google Scholar 

  27. Rajasekhara, S., Kotula, P.G., Enos, D.G., Doyle, B.L., and Clark, B.G., Influence of zircaloy cladding composition on hydride formation during aqueous hydrogen charging, J. Nucl. Mater., 2017, vol. 489, pp. 222–228.

    Article  CAS  Google Scholar 

  28. Simpson, L.A. and Cann, C.D., Fracture toughness of zirconium hydride and its influence on the crack resistance of zirconium alloys, J. Nucl. Mater., 1979, vol. 87, nos. 2–3, pp. 303–316.

    Article  CAS  Google Scholar 

  29. Weatherly, G.C., The precipitation of gamma-hydride plates in zirconium, Acta Metall., 1981, vol. 29, no. 3, pp. 501–512.

    Article  CAS  Google Scholar 

  30. Suman, S., Khan, M.K., Pathak, M., Singh, R.N., and Chakravartty, J.K., Hydrogen in zircaloy: mechanism and its impacts, Int. J. Hydrogen Energy, 2015, vol. 40, no. 17, pp. 5976–5994.

    Article  CAS  Google Scholar 

  31. Bradbrook, J.S., Lorimer, G.W., and Ridley, N., The precipitation of zirconium hydride in zirconium and zircaloy-2, J. Nucl. Mater., 1972, vol. 42, no. 2, pp. 142–160.

    Article  CAS  Google Scholar 

  32. Northwood, D.O., Gilbert, R.W., Bahen, L.E., Kelly, P.M., Blake, R.G., Jostsons, A., Madden, P.K., Faulkner, D., Bell, W., and Adamson, R.B., Characterization of neutron irradiation damage in zirconium alloys—an international “round-robin” experiment, J. Nucl. Mater., 1979, vol. 79, no. 2, pp. 379–394.

    Article  CAS  Google Scholar 

  33. Carpenter, G.J.C. and Watters, J.F., A study of electron irradiation damage in zirconium using a high voltage electron microscope, J. Nucl. Mater., 1981, vol. 96, no. 3, pp. 213–226.

    Article  CAS  Google Scholar 

  34. Company, P., C-component dislocations in neutron irradiated zircaloy-2, J. Nucl. Mater., 1983, vol. 116, pp. 127–130.

    Article  Google Scholar 

  35. Onimus, F. and Béchade, J.L., Radiation effects in zirconium alloys, in Comprehensive Nuclear Materials, Konings, R.J.M., Ed., Amsterdam: Elsevier, 2012, vol. 4, pp. 1–31.

    Google Scholar 

  36. Idrees, Y., Yao, Z., Kirk, M.A., and Daymond, M.R., In situ study of defect accumulation in zirconium under heavy ion irradiation, J. Nucl. Mater., 2013, vol. 433, nos. 1–3, pp. 95–107.

    Article  CAS  Google Scholar 

  37. Yan, C., Wang, R., Wang, Y., Wang, X., and Bai, G., Effects of ion irradiation on microstructure and properties of zirconium alloys—A review, Nucl. Eng. Technol., 2015, vol. 47, no. 3, pp. 323–331.

    Article  CAS  Google Scholar 

  38. Barashev, A.V., Golubov, S.I., and Stoller, R.E., Theoretical investigation of microstructure evolution and deformation of zirconium under neutron irradiation, J. Nucl. Mater., 2015, vol. 461, pp. 85–94.

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within the framework of the grant of the President of the Russian Federation no. MK-4420.2018.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Frolov.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolov, A.S., Gurovich, B.A., Kuleshova, E.A. et al. Degradation of Fuel Cladding Materials Based on Zirconium after Operation in VVER-Type Reactors. Inorg. Mater. Appl. Res. 10, 1461–1470 (2019). https://doi.org/10.1134/S2075113319060091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113319060091

Keywords:

Navigation