Skip to main content
Log in

Elaboration of Chemical Hydrogen Source Based on Hydrides of Magnesium Alloys

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

In the present work, Mg–Ni–Mm alloys (where Mm is a mixture of rare earth metals) are studied to elaborate a chemical hydrogen source for portable energy systems based on fuel cells characterized by high gravimetric energy density used for unmanned air vehicles and robot systems. Hydrogen generation on demand by hydrolysis of metal hydrides (MgH2, Mg2NiH4) is proposed for the fuel cell power supply because it is the most efficient method characterized by high hydrogen storage density, safety, and low costs of the stored energy. The influence of the composition of alloys on the hydrogen absorption properties and hydrogen generation during hydrolysis is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ferreira, H., Garde, R., Fulli, G., Kling, W., and Lopes, J., Characterization of electrical energy storage technologies, Energy, 2013, vol. 53, pp. 288–298.

    Article  Google Scholar 

  2. Varin, R.A., Nanomaterials for Solid State Hydrogen Storage, New York: Springer-Verlag, 2009.

    Book  Google Scholar 

  3. Kim, J. and Kim, T., Compact PEM fuel cell system combined with allin-one hydrogen generator using chemical hydride as a hydrogen source, Appl. Energy, 2015, vol. 160, pp. 945–953.

    Article  CAS  Google Scholar 

  4. Kim, S.J., Hydrogen generation system using sodium borohydride for operation of a 400W-scale polymer electrolyte fuel cell stack, J. Power Sources, 2007, vol. 170, pp. 412–418.

    Article  CAS  Google Scholar 

  5. Sim, J., Hydrogen generation from solid-state NaBH4 particles using NaHCO3 agents for PEM fuel cell systems, Energy Procedia, 2014, vol. 61, pp. 2058–2061.

    Article  CAS  Google Scholar 

  6. Yang, L., Guo, J., Huang, W.C., and Jang, B.Z., US Patent 20060112635, 2006.

  7. Stepan, C.R., Adams, P., Curello, A.J., Sgroi, A., and Fairbanks, F., US Patent 20080206113, 2008.

  8. Cenci, G., Vizza, F., Filippi, J., Marchionni, A., and Bianchini, C., EU Patent 2013021243, 2013.

  9. Amendola, S.C., Petillo, P.J., Petillo, S.C., and Mohring, R.M., US Patent 6932847, 2005.

  10. Wang, H., The hydrolysis behavior of Mg2Ni and Mg2NiH4 in water or a 6 M KOH solution and its application to Ni nanoparticles synthesis, J. Alloys Comd., 2009, vol. 470, pp. 539–543.

    Article  CAS  Google Scholar 

  11. Tegel, M., Schöne, S., Kieback, B., and Röntzsch, L., An efficient hydrolysis of MgH2-based materials, Int. J. Hydrogen Energy, 2017, vol. 42, pp. 2167–2176.

    Article  CAS  Google Scholar 

  12. Ouyang, L., Enhanced hydrogen generation properties of MgH2-based hydrides by breaking the magnesium hydroxide passivation layer, Energies, 2015, vol. 8, pp. 4237–4252.

    Article  CAS  Google Scholar 

  13. Hiraki, T., Hiroi, S., Akashi, T., Okinaka, N., and Akiyama, T., Chemical equilibrium analysis for hydrolysis of magnesium hydride to generate hydrogen, Int. J. Hydrogen Energy, 2012, vol. 37, pp. 12114–12119.

    Article  CAS  Google Scholar 

  14. Klyamkin, S.N., Verbetskii, V.N., and Semenenko, K.N., Hydrogenation of magnesium in the presence of hydride of rare earth metals, Izv. Akad. Nauk SSSR, Met., 1989, no. 2, pp. 182–187.

  15. Kuliev, S.I., Klyamkin, S.N., Verbetskii, V.N., Gasan-zade, A.A., and Semenenko, K.N., Interaction of alloys magnesium–mischmetal–nickel with hydrogen, Izv. Akad. Nauk SSSR, Met., 1988, no. 1, pp. 173–176.

  16. Huang, J.M., Ouyang, L.Z., Wen, Y.J., Wang, H., Liu, J.W., Chen, Z.L., and Zhu, M., Improved hydrolysis properties of Mg3RE hydrides alloyed with Ni, Int. J. Hydrogen Energy, 2014, vol. 39, pp. 6813–6818.

    Article  CAS  Google Scholar 

  17. Semenenko, K.N., Verbetskii, V.N., Mitrokhin, S.V., and Burnasheva, V.V., The interaction of intermetallic compounds of zirconium crystallized in structural types of Laves phases with hydrogen, Zh. Inorg. Khim., 1980, no. 7, pp. 1731–1736.

Download references

FUNDING

This work was supported by the Foundation for Innovations Assistance (project no. 2104GS1/35284, 31.08.2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Gvozdkov.

Additional information

Translated by P. Vlasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gvozdkov, I.A., Belyaev, V.A., Potapov, S.N. et al. Elaboration of Chemical Hydrogen Source Based on Hydrides of Magnesium Alloys. Inorg. Mater. Appl. Res. 10, 870–874 (2019). https://doi.org/10.1134/S2075113319040178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113319040178

Keywords:

Navigation