Skip to main content
Log in

Features of Formation of the Structure of Nitrogenous Steel during High Temperature Thermomechanical Treatment

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The study of formation of the structure of austenitic nitrogenous steel obtained from physical simulation of the processes of hot deformation with a Gleeble-3800 installation by various modes is considered in the work. The kinetics of metadynamic recrystallization within the interdeformation interval under multipass deformation implemented under different schemes is studied. As a result, it was established that, depending on the deformation scheme, the recrystallization runs with varying degree and intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Gorynin, I.V., Rybin, V.V., Malyshevskii, V.A., Kalinin, G.Yu., Mushnikova, S.Yu., Malakhov, N.V., and Yampol’skii, V.D., Creation of prospective fundamentally new corrosion-resistant cored steels doped with nitrogen, Vopr. Materialoved., 2005, no. 2 (42), pp. 40–55.

  2. Gorynin, I.V., Malyshevskii, V.A., Kalinin, G.Yu., Mushnikova, S.Yu., Bannykh, O.A., Blinov, V.M., and Kostina, M.V., Corrosion-resistant high-strength nitro-genous steels, Vopr. Materialoved., 2009, no. 3 (59), pp. 7–16.

  3. Kalinin, G.Yu., Mushnikova, S.Yu., Nesterova, E.V., Fomina, O.V., and Khar’kov, A.A., The structure and properties of high-strength corrosion-resistant nitrogen steel 04Kh20N6G11M2AFB, Vopr. Materialoved., 2006, no. 1 (45), pp. 45–53.

  4. Kalinin, G.Yu., Malyshevskii, V.A., Mushnikova, S.Yu., Petrov, S.N., and Yampol’skii, V.D., Effect of the degree of hot plastic deformation on microstructure and mechanical properties of austenitic high-strength corrosion-resistant steel 05Kh19N5G12AM2BF, Vopr. Materialoved., 2003, no. 4 (36), pp. 5–11.

  5. Kalinin, G.Yu., Khar’kov, A.A., Fomina, O.V., and Golub, Yu.V., Possible wide implementation of austenitic steels doped with nitrogen, Morsk. Vestn., 2010, no. 4 (36), pp. 82–83.

  6. Vikhareva, T.V., Fomina, O.V., Kalinina, G.Yu., Petrov, S.N., and Zisman, A.A., Effect of secondary phases on structuring during high-temperature thermomechanical treatment and further thermal treatment of nitrogen-containing steel, V Mezhdunarodnaya konferentsiya-shkola po khimicheskoi tekhnologii, Tezisy dokladov (V Int. Conf.-School on Chemical Technology, Abstracts of Papers), Volgograd: Volgograd. Gos. Tekh. Univ., 2016, pp. 145–147.

  7. Rushits, S.V., Akhmed’yanov, A.M., Smirnov, M.A., Lapina, I.V., and Gol’dshtein, V.Ya., Deformation behavior of corrosion-resistant supermartensitic steel under hot precipitation, Vestn. Yuzh.-Ural. Gos. Univ., Ser.: Metall., 2016, vol. 16, no. 4, pp. 109–116.https://doi.org/10.14529/met160412

    Article  Google Scholar 

  8. Akhmed’yanov, A.M., Rushits, S.V., and Smirnov, M.A., Physical and mathematical modeling of hot deformation of 20Kh13 steel, Vestn. Yuzh.-Ural. Gos. Univ., Ser.: Metall., 2013, vol. 13, no. 2, pp. 116–124.

    Google Scholar 

  9. Yang, L.-C., Pan, Y.-T., Chen, I.-G., and Lin, D.-Y., Constitutive relationship modeling and characterization of flow behavior under hot working for Fe–Cr–Ni–W–Cu–Co super-austenitic stainless steel, Metals, 2015, vol. 5, pp. 1717–1731. https://doi.org/10.3390/met501717

    Article  CAS  Google Scholar 

  10. Dehghan-Manshadi, A., Barnett, M.R., and Hodgson, P.D., Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation, Mater. Sci. Eng., A, 2008, vol. 485, pp. 664–672. https://doi.org/10.1016/j.msea.2007.08.026

    Article  CAS  Google Scholar 

  11. Mirzadeh, H., Cabrera, J.M., Najafizadeh, A., and Calvillo, P.R., EBSD study of a hot deformed austenitic stainless steel, Mater. Sci. Eng., A, 2012, vol. 538, pp. 236–245. https://doi.org/10.1016/j.msea.2012.01.037

    Article  CAS  Google Scholar 

  12. Jafari, M. and Najafizadeh, A., Comparison between the method of determination the critical stress for initiation of dynamic recrystallization in 316 stainless steel, J. Mater. Sci. Technol., 2008, vol. 24, no. 6, pp. 840–844.

    CAS  Google Scholar 

  13. Spektor, Ya.I., Kunitskaya, I.N., Tumko, A.N., et al., Thermokinetic charts and re-crystallization of special steels during multipass hot deformation, Nov. Mater. Tekhnol. Metal. Mashinoborud., 2009, no. 1, pp. 11–17.

  14. Spektor, Ya.I., Kunitskaya, I.N., and Ol’shanetskii, V.E., Dynamic re-crystallization of special steels at multipass hot deformation, Nov. Mater. Tekhnol. Metal. Mashinoborud., 2010, no. 2, pp. 45–49.

  15. Kodzhaspirov, G.E., Rudskoi, A.I., and Rybin, V.V., Fizicheskie osnovy i resursosberegayushchie tekhnologii izgotovleniya izdelii plasticheskim deformirovaniem (Physical Principles and Resource-Saving Technologies of Plastic Deformation), St. Petersburg: Nauka, 2006.

  16. Vikhareva, T.V., Fomina, O.V., Kalinin, G.Yu., and Gribanova, V.B., Study of dynamic and static recrystallization in austenitic nitrogen-containing steel during high-temperature thermomechanical treatment, Me-tallurgist, 2016, vol. 60, nos. 3–4, pp. 281–288.

  17. Gorelik, S.S., Dobatkin, S.V., and Kaputkina, L.M., Rekristallizatsiya metallov i splavov (Recrystallization of Metals and Alloys), Moscow: Mosk. Inst. Stali Splavov, 2005, 3rd ed.

  18. Humphreys, F.J. and Hatherly, M., Recrystallization and Related Annealing Phenomena, Amsterdam: Elsevier, 2004, 2nd ed.https://doi.org/10.1016/D978-0-08-044164-1.X5000-2

    Google Scholar 

  19. Sakai, T., Belyakov, A., Kaibyshev, R., Miura, H., and Jonas, J.J., Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci., 2014, vol. 60, pp. 130–207. https://doi.org/10.1016/j.pmatsci.2013.09.002

    Article  CAS  Google Scholar 

  20. Doherty, R.D., Hughes, D.A., Humphreys, F.J., Jonas, J.J., Juul Jensen, D., Kassner, M.E., King, W.E., McNelley, T.R., McQueen, H.J., and Rollett, A.D., Current issues in recrystallization: a review, Mater. Sci. Eng., A, 1997, vol. 238, pp. 219–274. https://doi.org/10.1016/S0921-5093(97)00424-3

    Article  Google Scholar 

  21. Dehghan-Manshadi, A., Barnett, M.R., and Hodgson, P.D., Hot deformation and recrystallization of austenitic stainless steel: Part I. Dynamic recrystallization, Metall. Mater. Trans. A, 2008, vol. 39, pp. 1359–1370. https://doi.org/10.1007/s11661-008-9512-7

    Article  CAS  Google Scholar 

  22. Galindo-Nava, E.I. and Rivera-Díaz-del-Castillo, P.E.J., Thermostatistical modelling of hot deformation in FCC metals, Int. J. Plast., 2013, vol. 47, pp. 202–221. https://doi.org/10.1016/j.ijplas.2013.02.002

    Article  CAS  Google Scholar 

  23. Fomina, O.V., Structure formation in high-strength nitrogen-bearing steel on hot deformation, Steel Transl., 2017, vol. 47, no. 3, pp. 172–177. https://doi.org/10.3103/S0967091217030056

    Article  Google Scholar 

  24. Kalinin, G.Yu., Mushnikova, S.Yu., Nesterova, E.V., and Khar’kov, A.A., The structure and properties of high-strength corrosion-resistant nitrogenous steel 04Kh20N6G11M2AFB, Vopr. Materialoved., 2006, no. 1 (45), pp. 45–54.

  25. Kodjaspirov, G.E., Sulyagin, R.V., and Karjalainen, L.P., Effect of temperature and deformation conditions on hardening and softening of nitrogen-bearing corrosion-resistant steels, Met. Sci. Heat Treat., 2005, vol. 47, nos. 11–12, pp. 22–26.

  26. Zisman, A.A., Soshina, T.V., and Khlusova, E.I., Maps of structure changes in austenite of low carbon steel 09CrNi2MoCuV during hot deformation and their use to improve industrial technologies, Inorg. Mater.: Appl. Res., 2014, vol. 5, no. 6, pp. 570–577.

    Article  Google Scholar 

  27. Garcí a-Mateo, C., López, B., and Rodriguez-Ibabe, J.M., Static recrystallization kinetics in warm worked vanadium microalloyed steel, Mater. Sci. Eng., A, 2001, vol. 303, pp. 216–225. https://doi.org/10.1016/S0921-5093(00)01940-7

  28. Malyshevskii, V.A., Kalinin, G.Yu., Fomina, O.V., Vikhareva, T.V., and Kruglova, A.A., Structure formation in a nitrogen-bearing steel under thermodeformation conditions and its relation to the mechanical properties, Russ. Metall. (Engl. Transl.), 2014, vol. 2014, no. 12, pp. 968–975.

Download references

ACKNOWLEDGMENTS

The experimental studies were performed with the equipment of the Shared Access Center of Scientific Equipment Composition, Structure, and Features of Structural and Operational Materials of the Central Research Institute of Structural Materials Prometey of the National Research Center Kurchatov Institute.

Funding

The work was implemented with the financial support of the Ministry of Education and Science within the framework of the agreement no. 14.595.21.0004, unique identifier RFMEFI59517X0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Fomina.

Additional information

Translated by M. Kromin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomina, O.V., Vikhareva, T.V., Markova, Y.M. et al. Features of Formation of the Structure of Nitrogenous Steel during High Temperature Thermomechanical Treatment. Inorg. Mater. Appl. Res. 10, 757–765 (2019). https://doi.org/10.1134/S2075113319040129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113319040129

Keywords:

Navigation