Skip to main content
Log in

Formation the Properties of Carbon Black Particles by Gas-Phase Thermochemical Modification

  • NEW TECHNOLOGIES OF PREPARATION AND TREATMENT OF MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Formation the structural and functional properties of carbon black (CB) during the synthesis stage or through post-treatment is an important practical problem that will lead to the development of special types of this material, and those with superior electrical conductivity properties are of primary importance. This work is a continuation of our previous research and concerns the structure–property relationships that arise as a result of applying basic process techniques. Done and studied the effects of gas-phase thermochemical modification (thermal oxidation and thermal modification at temperature up to 3000°C) and its technological parameters on the characteristics of microstructure, texture, and surface chemistry of CB particles and the relationships between these parameters and electrical physical properties of CB powders. We study the effect that the combined treatment—thermal treatment at 3000°C followed by gas-steam activation at 900°C—has on CB powders. For the prepared CB powders, we use an array of different characterization techniques to establish the relationship between the structure and microstructure, on the hand, and the electrical conductivity, on the other hand: X-ray diffraction analysis, Raman spectroscopy, electron paramagnetic resonance, high-resolution transmission electron microscopy, and low-temperature nitrogen adsorption. The bulk electrical resistance is measured on samples prepared by compression of CB nanopowders under a pressure as high as 200 atm. We carry out a comprehensive characterization of the particle structure for different types of CB and compare them to commercial conducting types of CB of both domestic and foreign origin. The observed effects are interpreted in terms of ideal crystalline carbon systems (i.e., graphenes), which have been in spotlight of both fundamental and applied research in the past years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Carbon Nanotechnology, Dai, L., Ed., Amsterdam: Elsevier, 2006.

    Google Scholar 

  2. Carbon Nanomaterials, Gogotsi, Y., Ed., Boca Raton: CRC Press, 2006.

    Google Scholar 

  3. Gyul’misaryan, T.G., Kapustin, V.M., and Levenberg, I.P., Tekhnicheskii uglerod: morfologiya, svoistva, proizvodstvo (Carbon Black: Morphology, Properties, and Production), Moscow: Kauchuk i Rezina, 2017.

  4. Surovikin, V.F., Modern tendencies of development of methods and technologies of nanodispersed carbon materials obtaining, Ross. Khim. Zh., 2007, no. 4, pp. 92–97.

  5. Donnet, J.B., Bansal, R.C., and Wang, M.J., Carbon Black: Science and Technology, New York: Marcel Dekker, 1993.

    Google Scholar 

  6. Kinoshita, K., Carbon: Electrochemical and Physicochemical Properties, New York: Wiley, 1988.

    Google Scholar 

  7. Chung, D.D.L., Electrical application of carbon materials: review, J. Mater. Sci., 2004, vol. 39, pp. 2645–2661.

    Article  CAS  Google Scholar 

  8. Trogadas, P., Fuller, T.F., and Strasser, P., Carbon as catalyst and support for electrochemical energy conversion, Carbon, 2014, vol. 75, pp. 5–42.

    Article  CAS  Google Scholar 

  9. Carbons for Electrochemical Energy Storage and Conversion Systems, Beguin, F., and Frackowiak, E., Eds., Boca Raton: CRS Press, 2010.

    Google Scholar 

  10. Mikhailin, Yu.A., Spetsial’nyye polimernyye kompozitsionnyye materialy (Special Polymeric Composite Materials), Moscow: Nauchnye Osnovy i Tekhnologii, 2009.

  11. Surovikin, V.F., Anikeev, V.N., Sazhin, G.V., and Turenko, L.G., The obtaining of electrically conductive carbon black in furnace, in Polucheniya i svoistva elektroprovodyashchego tekhnicheskogo ugleroda (Production and Properties of Electroconductive Carbon Black), Moscow: Tsentr. Nauchno-Issled. Inst. Inf. Tekh.-Ekon. Issled. Neftepererab. Neftekhim. Prom., 1981, no. 4, pp. 16–26.

  12. Bourrat, X., Electrically conductive grades in carbon black: structure and properties, Carbon, 1993, vol. 31, pp. 287–302.

    Article  CAS  Google Scholar 

  13. Pantea, D., Darmstadt, H., Kaliaguine, S., and Roy, C., Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology, Appl. Surf. Sci., 2003, vol. 217, pp. 181–193.

    Article  CAS  Google Scholar 

  14. Spahr, M.E., Gilardi, R., and Bonacchi, D., Carbon black for electrically conductive polymer applications, in Polymers and Polymeric Composites: A Reference Series, Palsule, S., Ed., Berlin: Springer-Verlag, 2016, ch. 2, pp. 1–26.

  15. Schwob, Y., Acetylene black: manufacture, properties and applications, in Chemistry and Physics of Carbon, Thrower, P.A., Ed., New York: Marcel Dekker, 1966, vol. 15, pp. 109–228.

    Google Scholar 

  16. Batraev, I.S., Vasil’ev, A.A., Pinaev, A.V., Ul’yanitskii, V.Yu., Shtertser, A.A., Likholobov, V.A., Shaitanov, A.G., Surovikin, Yu.V., and Rybin, D.K., RF Patent 2641829, Byull. Izobret., 2018, no. 3.

  17. Surovikin, Yu.V., Shaitanov, A.G., Drozdov, V.A., Rezanov, I.V., and Morozov, A.D., Effect of thermal oxidative treatment on the structure and electrical conductivity of nanodispersed carbon black particles, Solid Fuel Chem., 2014, vol. 48, no. 6, pp. 392–403.

    Article  CAS  Google Scholar 

  18. Surovikin, Yu.V., Shaitanov, A.G., Drozdov, V.A., Rezanov, I.V., and Mutomtsev, I.V., Structure and properties of nanodispersed globular carbon after thermooxidative water vapor treatment, Khim. Interesakh Ustoich. Razvit., 2014, no. 6, pp. 577–583.

  19. Surovikin, Yu.V., Shaitanov, A.G., Tsvetkov, Yu.A., and Rezanov, I.V., The effect of thermal-oxidative and thermal treatment on the structure and electrical conductivity properties of the carbon black particles, Proc. 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics 2014), Piscataway: Inst. Electr. Electron. Eng., 2014. https://doi.org/10.1109/Dynamics.2014.7005697.

  20. Surovikin, Yu.V., Shaitanov, A.G., Resanov, I.V., and Syr’eva, A.V., The properties of nanodispersed carbon black particles after thermal treatment, Procedia Eng., 2015, vol. 113, pp. 519–524.

    Article  CAS  Google Scholar 

  21. Surovikin, Yu.V., Shaitanov, A.G., Rezanov, I.V., Syr’eva A.V., Likholobov, V.A., Poddubnyak, A.N., and Chigrin K.K., Effect of high-temperature gas-chemical modification on the structural and functional properties of carbon black particles, Russ. J. Appl. Chem., 2017, vol. 90, no. 12, pp. 1974–1981.

    Article  CAS  Google Scholar 

  22. Surovikin, Yu.V., Shaitanov, A.G., and Rezanov, I.V., Electrical conductivity of nanocomposite particles based on carbon black, Din. Sist., Mekh. Mash., 2016, vol. 3, no. 1, pp. 296–300.

    Google Scholar 

  23. Biscoe, J. and Warren, B.E., An X-ray study of carbon black, J. Appl. Phys., 1942, vol. 13, pp. 364–371.

    Article  CAS  Google Scholar 

  24. Pechkovskaya, K.A., Sazha kak usilitel’ kauchuka (Soot as a Rubber Enhancer), Moscow: Khimiya, 1968.

  25. Ferrari, A.C. and Robertson, J., Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 2000, vol. 61, pp. 14095–14107.

    Article  CAS  Google Scholar 

  26. Bukalov, S.S., Mikhalitsyn, L.A., Zubavichus, Ya.V., Leites, L.A., and Novikov, Yu.N., Analysis of the structure of graphites and some other sp 2 carbon materials by the micro-Raman spectroscopy and X-ray diffractometry, Ross. Khim. Zh., 2006, no. 1, pp. 83–91.

  27. Tuinstra, F. and Koenig, J.L., Raman spectrum of graphite, J. Chem. Phys., 1970, vol. 53, pp. 1126–1130.

    Article  CAS  Google Scholar 

  28. Surovikin, Yu.V., Shaitanov, A.G., Syrieva, A.V., Rezanov, I.V., and Muromtsev, I.V., Some changes in the properties of nanodispersed carbon black particles upon their modification, Procedia Eng., 2016, vol. 152, pp. 720–726.

    Article  CAS  Google Scholar 

  29. Shulepov, S.V., Fizika uglegrafitovykh materialov (Physics of Carbon-Graphite Materials), Moscow: Metallurgiya, 1972.

  30. Shaitanov, A.G., Surovikin, Y.V., Morozov, A.D., and Rezanov, I.V., Investigation of conductive nanodisperse carbon by Raman scattering spectroscopy, Int. Polym. Sci. Technol., 2014, vol. 40, no. 12, pp. T25–T30.

    Article  Google Scholar 

  31. Tarasevich, M.R., Elektrokhimiya uglerodnykh materialov (Electrochemistry of Carbon Materials), Moscow: Nauka, 1984.

  32. Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., and Pöschl, U., Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information, Carbon, 2005, vol. 43, pp. 1731–1742.

    Article  CAS  Google Scholar 

  33. Ammar, M.R., Galy, N., Rouzaud, J.N., Toulhoat, N., Vaudey, C.E., Simon, P., and Moncoffre, N., Characterizing various types of defects in nuclear graphite using Raman scattering: heat treatment, ion irradiation and polishing, Carbon, 2015, vol. 95, pp. 364–373.

    Article  CAS  Google Scholar 

  34. Angoni, K., Remarks on the structure of carbon materials on the basis of Raman spectra, Carbon, 1993, vol. 31, pp. 537–547.

    Article  CAS  Google Scholar 

  35. Malard, L.M., Pimenta, M. A., Dresselhaus, G., and Dresselhaus, M.S., Raman spectroscopy in graphene, Phys. Rep., 2009, vol. 473, pp. 51–87.

    Article  CAS  Google Scholar 

  36. Pawlyta, M., Rouzaud, J.-N., and Duber, S., Raman microspectroscopy characterization of carbon blacks: spectral analysis and structural information, Carbon, 2015, vol. 84, pp. 479–490.

    Article  CAS  Google Scholar 

  37. Bogdanov, K., Fedorov, A., Osipov, V., Enoki, T., Takai, K., Hayashi, T., Ermakov, V., Moshkalev, S., and Baranov, A., Annealing-induced structural changes of carbon onions: high-resolution transmission electron microscopy and Raman studies, Carbon, 2014, vol. 73, pp. 78–86.

    Article  CAS  Google Scholar 

  38. Ferrari, A.C., Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun., 2007, vol. 143, pp. 47–57.

    Article  CAS  Google Scholar 

  39. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., and Kong, J., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett., 2009, vol. 9, pp. 30–35.

    Article  CAS  PubMed  Google Scholar 

  40. Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., and Geim, A.K., Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 2006, vol. 97, pp. 1–4.

    Google Scholar 

  41. Surovikin, V.F., Shaitanov, A.G., Surovikin, Yu.V., Rezanov, I.V., and Morozov, A.D., Effect of thermo-oxidative treatment of carbon black particles on their structural characteristics and electrical conductivity, Materialy VIII Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Dinamika sistem, mekhanizmov i mashin,” Omsk, 13–15 noyabrya 2012 g. (Proc. VIII Int. Sci.-Tech. Conf. “Dynamics of Systems, Mechanisms, and Machines,” Omsk, November 13–15, 2012), Omsk: Omsk. Gos. Tekh. Univ., 2012, book 3, pp. 234–238.

Download references

ACKNOWLEDGMENTS

This work was supported within a state assignment to the Institute of Hydrocarbon Processing Problems, Siberian Branch, Russian Academy of Sciences, in accordance with the Program for Fundamental Research of the State Academies of Sciences for 2013–2020, direction V.45, project no. V.45.2.8, stage 2 (registration number in EGISU NIOKTR system AAAA-A17-117021450093-7).

Physicochemical characterizations of CB samples were carried out using facilities of the Omsk Center for Collective Use, Siberian Branch, Russian Academy of Sciences, in the city of Omsk.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. V. Surovikin, A. G. Shaitanov, I. V. Rezanov or A. V. Syrieva.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surovikin, Y.V., Shaitanov, A.G., Rezanov, I.V. et al. Formation the Properties of Carbon Black Particles by Gas-Phase Thermochemical Modification. Inorg. Mater. Appl. Res. 10, 480–495 (2019). https://doi.org/10.1134/S2075113319020370

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113319020370

Keywords:

Navigation