Skip to main content
Log in

Effects of Synthesis Method and Stabilizing Agent Trehalose on Functional Properties of Protein Composites with Colloidal Silica

  • MATERIALS FOR HUMAN LIFE SUPPORT AND ENVIRONMENTAL PROTECTION
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Protein-silica composites are a promising platform for the development of new dosage of protein drugs. The sol-gel method was used to synthesize bovine serum albumin composites with colloidal silica in the presence and absence of trehalose as a protein structure stabilizer. The structural state of the protein in the composites and after release from them and the kinetics and mechanisms of in vitro release were studied. The functional properties of the sol-gel composites were compared with similar composites obtained by the adsorption method. The strong effect of the synthesis method and the influence of trehalose on the structure of the protein and the kinetic parameters and mechanisms of its release were shown. On the basis of a comparative analysis, it was concluded that sol-gel composites have a number of advantages over adsorption-derived composites in terms of their functioning as delivery systems of protein drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Biró, E., Budugan, D., Todea, A., Péter, F., Klébert, S., and Feczkó, T., Recyclable solid-phase biocatalyst with improved stability by sol–gel entrapment of α-δ–galactosidase, J. Mol. Catal. B: Enzym., 2016, vol. 123, pp. 81–90.

  2. Ronda, L., Bruno, S., Campanini B., Mozzarelli A., Abbruzzetti S., Viappiani, C., Cupane, A., Levantino, M., and Bettat, S., Immobilization of proteins in silica gel: biochemical and biophysical properties, Curr. Org. Chem., 2015, vol. 19, pp. 1653–1668.

    Article  CAS  Google Scholar 

  3. Timin, A.S. and Rumyantsev, E.V., Sol–gel synthesis of mesoporous silicas containing albuminand guanidine polymers and its application to the bilirubin adsorption, J. Sol-Gel Sci. Technol., 2013, vol. 67, pp. 297–303

    Article  CAS  Google Scholar 

  4. Werle, M. and Bernkop-Schnürch, A., Strategies to improve plasma half life time of peptide and protein drugs, Amino Acids, 2006, vol. 30, pp. 351–367.

    Article  CAS  PubMed  Google Scholar 

  5. Mody, K.T., Popat, A., Mahony, D., Cavallaro, A.S., Yu, C., and Mitter, N., Mesoporous silica nanoparticles as antigen carriers and aduvants for vaccine delivery, Nanoscale, 2013, vol. 5, pp. 5167–5178.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, T., Jiang, H., Zhao, Q., Wang, S., Zou, M., and Cheng, G., Enhanced mucosal and systemic immune responses obtained by porous silica nanoparticles used as an oral vaccine adjuvant: effect of silica architecture on immunological properties, Int. J. Pharm., 2012, vol. 436, pp. 351–358.

    Article  CAS  PubMed  Google Scholar 

  7. Viitala, R., Jokinen, M., and Rosenholm, J.B., Mechanistic studies on release of large and small molecules from biodegradable SiO2, Int. J. Pharm., 2007, vol. 336, pp. 382–390.

    Article  CAS  PubMed  Google Scholar 

  8. Dolinina, E.S., Vlasenkova, M.I., and Parfenyuk, E.V., Effect of trehalose on structural state of bovine serum albumin adsorbed onto mesoporous silica and the protein release kinetics in vitro, Colloids Surf., A, 2017, vol. 527, pp. 101–108.

    Article  CAS  Google Scholar 

  9. GRAS notification for synthetic amorphous silica. https://www.fda.gov/downloads/food/ingredientspackaginglabeling/gras/noticeinventory/ucm438717.pdf.

  10. Karimi, M., Chaudhury, I., Chang, J., Safari, M., Sadeghi, R., Habibi-Rezaei, M., and Kokini, J., Immobilization of endoinulinase on non-porous amino functionalized silica nanoparticles, J. Mol. Catal., B, 2014, vol. 104, pp. 48–55.

    Article  CAS  Google Scholar 

  11. Zhang, Q., Zhao, Q., Zhang, Y., Han, N., Hu, L., Zhang, C., Jiang, T., and Wang, C., Investigation of 3‑D ordered materials with a high adsorption capacity for BSA and their potential application as an oral vaccine adjuvant, J. Colloid Interface Sci., 2014, vol. 434, pp. 113–121.

    Article  CAS  PubMed  Google Scholar 

  12. Delfino, I., Portaccio, M., Ventura, B.D., Mita, D.G., and Lepore, M., Enzyme distribution and secondary structure of sol–gel immobilized glucose oxidase by micro-attenuated total reflection FT–IR spectroscopy, Mater. Sci. Eng., C, 2013, vol. 33, pp. 304–310.

    Article  CAS  Google Scholar 

  13. Vera-Avila, L.E., García-Salgado, E., García de Llasera, M.P., and Peña-Alvarez, A., Binding characteristics of bovine serum albumin encapsulated in sol–gel glasses: an alternative for protein interaction studies, Anal. Biochem., 2008, vol. 373, pp. 272–280.

    Article  CAS  PubMed  Google Scholar 

  14. Menaa, B., Torres, C., Herrero, M., Rives, V., Gilbert, A.R.W., and Eggers, D.K., Protein adsorption onto organically modified silica glass leads to a different structure than sol-gel encapsulation, Biophys. J., 2008, vol. 95, pp. L51–L53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dolinina, E.S. and Parfenyuk, E.V., Development of novel delivery system for cardiovascular drug molsidomine: influence of synthesis method and conditions on molsidomine release from its composites with hydrophilic silica in vitro, J. Pharm. Sci., 2016, vol. 105, pp. 1952–1959.

    Article  CAS  PubMed  Google Scholar 

  16. Parfenyuk, E.V. and Dolinina, E.S., Development of novel warfarin-silica composite for controlled drug release, Pharm. Res., 2017, vol. 34, pp. 825–835.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., and Stucky, G.D., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 1998, vol. 120, pp. 6024–6036.

    Article  CAS  Google Scholar 

  18. Costa, P. and Lobo, J.M.S., Modeling and comparison of dissolution profiles, Eur. J. Pharm. Sci., 2001, vol. 13, pp. 123–133.

    Article  CAS  PubMed  Google Scholar 

  19. Eggers, D.K. and Valentine, J.S., Crowding and hydration effects on protein conformation: a study with sol-gel encapsulated proteins, J. Mol. Biol., 2001, vol. 314, pp. 911–922.

    Article  CAS  PubMed  Google Scholar 

  20. Kong, J. and Yu, S., Fourier transform infrared spectroscopic analysis of protein secondary structures, Acta Biochim. Biophys. Sin., 2007, vol. 39, pp. 549–559.

    Article  CAS  PubMed  Google Scholar 

  21. Determination of secondary structure in proteins by Fourier transform infrared spectroscopy (FTIR). http://jenalib.fli-l/ eibniz.de/ImgLibDoc/ftir/IMAGE_FTIR.html.

  22. Yadav, J.K., Macromolecular crowding enhances catalytic efficiency and stability of α-amylase, ISRN Biotechnol., 2013, vol. 7. https://doi.org/10.5402/2013/737805.

  23. Tozuka, Y., Sugiyama, E., and Takeuchi, H., Release profile of insulin entrapped on mesoporous materials by freeze/thaw method, Int. J. Pharm., 2010, vol. 386, pp. 172–177.

    Article  CAS  PubMed  Google Scholar 

  24. Liu, Q. and Fassih, R., Zero-order delivery of a highly soluble, low dose drug alfuzosin hydrochloride via gastro-retentive system, Int. J. Pharm., 2008, vol. 348, pp. 27–34.

    Article  CAS  PubMed  Google Scholar 

  25. Ritger, P.L. and Peppas, N.A., A simple equation for description of solute release. II. Fickian and anomalous release from swellable devices, J. Controlled Release, 1987, vol. 5, pp. 37–42.

    Article  CAS  Google Scholar 

  26. Mave, U., Godec, A., Bele, M., Planinšek, O., Gaberšč ek, M., Sr i , S., and Jamnik, J., Novel hybrid silica xerogels for stabilization and controlled release of drug, Int. J. Pharm., 2007, vol. 330, pp. 164–174.

    Article  CAS  Google Scholar 

  27. Ritger, P.L. and Peppas, N.A., A simple equation for description of solute release. I. Fickian and non-fickian release from non-sweliable devices in the form of slabs, spheres, cylinders or discs, J. Controlled Release, 1987, vol. 5, pp. 23–36.

    Article  CAS  Google Scholar 

  28. Chakraborty, S., Mitra, M.K., Chaudhuri, M.G., Sa, B., Das, S., and Dey, R., Study of the release mechanism of Terminalia chebula extract from nanoporous silica gel, Appl. Biochem. Biotechnol., 2012, vol. 168, pp. 2043–2056.

    Article  CAS  PubMed  Google Scholar 

  29. Jaganathan, K.S., Rao, Y.U.B., Singh, P., Prabakaran, D., Gupta, S., Jain, A., and Vyas, S.P., Development of a single dose tetanus toxoid formulation based on polymeric microspheres: a comparative study of poly(D,L-lactic-co-glycolic acid) versus chitosan microspheres, Int. J. Pharm., 2005, vol. 294, pp. 23–32.

    Article  CAS  PubMed  Google Scholar 

  30. Igartua, M., Hernández, R.M., Esquisabel, A., Gascón, A.R., Calvo, M.B., and Pedraz, J.L., Stability of BSA encapsulated into PLGA microspheres using PAGE and capillary electrophoresis, Int. J. Pharm., 1998, vol. 169, pp. 45–54.

    Article  CAS  Google Scholar 

  31. Vollrath, M., Engert, J., and Winte, G., Long-term release and stability of pharmaceutical proteins delivered from solid lipid implants, Eur. J. Pharm. Biopharm., 2017, vol. 117, pp. 244–255.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out in accordance with the plans of scientific research at the Institute of Solution Chemistry of the Russian Academy of Sciences on the topic “Scientific and Technological Bases of Obtaining Functional Materials and Nanocomposites” (no. 01201260483).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Dolinina.

Additional information

Translated by D. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolinina, E.S., Parfenyuk, E.V. Effects of Synthesis Method and Stabilizing Agent Trehalose on Functional Properties of Protein Composites with Colloidal Silica. Inorg. Mater. Appl. Res. 10, 373–380 (2019). https://doi.org/10.1134/S2075113319020102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113319020102

Keywords:

Navigation