Skip to main content
Log in

Composite Materials Obtained via Two-Nozzle Electrospinning from Polycarbonate and Vinylidene Fluoride/Tetrafluoroethylene Copolymer

  • Physicochemical Principles of Creating Materials and Technologies
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Nonwoven composite membranes based on polycarbonate (PC) and vinylidene fluoride/tetrafluoroethylene copolymer were obtained via the two-channel electrospinning method with a common collector. Three groups of materials were studied: the first one was a polymer membrane made of a vinylidene fluoride/tetrafluoroethylene copolymer, the second one was a polymer membrane based on PC, and the third one involved a composite polymer membrane. Scanning electron microscopy studies of morphology of the polymeric membranes showed that a composite material with a variable pore area could be obtained, which allows selection of this parameter depending on the purpose. The resulting composite material and its constituents are studied with nuclear magnetic resonance, IR spectroscopy, X-ray diffraction, and differential scanning calorimetry. There are electrically active crystalline phases in the composite membranes. The obtained nonwoven composite membrane formed is presented as a two-phase system without any chemical interactions between the phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gugliuzza, A. and Drioli, E., A review on membrane engineering for innovation in wearable fabrics and protective textiles, J. Membr. Sci., 2013, vol. 446, pp. 350–375. doi 10.1016/j.memsci.2013.07.014

    Article  CAS  Google Scholar 

  2. Filatov, Y., Budyka, A., and Kirichenko, V., Electrospinning of Micro-and Nanofibers: Fundamentals in Separation and Filtration Processes, New York: Begell House, 2007.

    Google Scholar 

  3. Reneker, D.H. and Chun, I., Nanometre diameter fibers of polymer, produced by electrospinning, Nanotechnology, 1996, vol. 7, pp. 216–223. doi 10.1088/0957-4484/7/3/009

    Article  CAS  Google Scholar 

  4. Kablov, E.N., Materials and chemical technologies for aircraft engineering, Herald Russ. Acad. Sci., 2012, vol. 82, no. 3, pp. 158–167. doi 10.1134/S1019331612030069

    Article  Google Scholar 

  5. Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., and Ramakrishna, S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol., 2003, vol. 63, pp. 2223–2253. doi 10.1016/S0266-3538(03)00178-7

    Article  CAS  Google Scholar 

  6. Teo, W.E. and Ramakrishna, S., A review on electrospinning design and nanofibre assemblies, Nanotechnology, 2006, vol. 17, pp. R89–R106. doi 10.1088/0957-4484/17/14/R01

    Article  CAS  Google Scholar 

  7. Zhang, C., Li, Y., Wang, W., Zhan, N., Xiao, N., Wang, S., Li, Y., and Yang, Q., A novel two-nozzle electrospinning process for preparing microfiber reinforced pH sensitive nano-membrane with enhanced mechanical property, Eur. Polym. J., 2011, vol. 47, pp. 2228–2233. doi 10.1016/j.eurpolymj.2011.09.015

    Article  CAS  Google Scholar 

  8. Hajiani, F., Jeddi, A.A.A., and Gharehaghaji, A.A., An investigation on the effects of twist on geometry of the electrospinning triangle and polyamide 66 nanofiber yarn strength, Fibers Polym., 2012, vol. 13, pp. 244–252. doi 10.1007/s12221-012-0244-3

    Article  CAS  Google Scholar 

  9. Dabirian, F. and Hosseini, S.A., Novel method for nanofibre yarn production using two differently charged nozzles, Fibres Text. East. Eur., 2009, vol. 74, pp. 45–47.

    Google Scholar 

  10. Park, C.H., Pant, H.R., and Kim, C.S., Novel robotassisted angled multi-nozzle electrospinning set-up: computer simulation with experimental observation of electric field and fiber morphology, Text. Res. J., 2014, vol. 84, pp. 1044–1058. doi 10.1177/0040517513517961

    Article  CAS  Google Scholar 

  11. Tijing, L.D., Choi, W., Jiang, Z., Amarjargal, A., Park, C.H., Pant, H.R., Im, I.T., and Kim, C.S., Twonozzle electrospinning of (MWNT/PU)/PU nanofibrous composite mat with improved mechanical and thermal properties, Curr. Appl. Phys., 2013, vol. 13, pp. 1247–1255. doi 10.1016/j.cap.2013.03.023

    Article  Google Scholar 

  12. Zhan, N., Li, Y., Zhang, C., Song, Y., Wang, H., Sun, L., Yang, Q., and Hong, X., A novel multinozzle electrospinning process for preparing superhydrophobic PS films with controllable bead-on-string/microfiber morphology, J. Colloid Interface Sci., 2010, vol. 345, pp. 491–495. doi 10.1016/j.jcis.2010.01.051

    Article  CAS  Google Scholar 

  13. Kochervinskii, V.V., The structure and properties of block poly(vinylidene fluoride) and systems based on it, Rus. Chem. Rev., 1996, vol. 65, no. 10, pp. 865–913. doi 10.1070/RC1996v065n10ABEH000328

    Article  Google Scholar 

  14. Furukawa, T., Ferroelectric properties of vinylidene fluoride copolymers, Phase Trans., 1989, vol. 18, pp. 143–211. doi 10.1080/01411598908206863

    Article  CAS  Google Scholar 

  15. Lee, E.-J., An, A.K., Hadi, P., Lee, S., Woo, Y.C., and Shon, H.K., Advanced multi-nozzle electrospun functionalized titanium dioxide/polyvinylidene fluoridecohexafluoropropylene (TiO2/PVDF-HFP) composite membranes for direct contact membrane distillation, J. Membr. Sci., 2017, vol. 524, pp. 712–720. doi 10.1016/j.memsci.2016.11.069

    Article  CAS  Google Scholar 

  16. Wang, X., Yu, J., Sun, G., and Ding, B., Electrospun nanofibrous materials: a versatile medium for effective oil/water separation, Mater. Today, 2016, vol. 19, pp. 403–414. doi 10.1016/j.mattod.2015.11.010

    Article  CAS  Google Scholar 

  17. Xie, S., Liu, X., Zhang, B., Ma, H., Ling, C., Yu, M., Li, L., and Li, J., Electrospun nanofibrous adsorbents for uranium extraction from seawater, J. Mater. Chem. A, 2015, vol. 3, pp. 2552–2558. doi 10.1039/C4TA06120A

    Article  CAS  Google Scholar 

  18. Greco, R. and Sorrentino, A., Polycarbonate/ABS blends: A literature review, Adv. Polym. Technol., 1994, vol. 13, pp. 249–258. doi 10.1002/adv.1994.060130401

    Article  CAS  Google Scholar 

  19. Kochervinskii, V.V., Specifics of structural transformations in poly(vinylidene fluoride)-based ferroelectric polymers in high electric fields, Polym. Sci., Ser. C, 2008, vol. 50, pp. 93–121. doi 10.1134/S1811238208010062

    Article  Google Scholar 

  20. Hicks, J.C., Jones, T.E., and Logan, J.C., Ferroelectric properties of poly(vinylidene fluoride-tetrafluoroethylene), J. Appl. Phys., 1978, vol. 49, p. 6092. doi 10.1063/1.324528

    Article  CAS  Google Scholar 

  21. Tasaka, S. and Miyata, S., Effects of crystal structure on piezoelectric and ferroelectric properties of copoly(vinylidenefluoride-tetrafluoroethylene), J. Appl. Phys., 1985, vol. 57, p. 906. doi 10.1063/1.334691

    Article  CAS  Google Scholar 

  22. Martins, P., Lopes, A.C., and Lanceros-Mendez, S., Electroactive phases of poly(vinylidene fluoride): determination, processing and applications, Prog. Polym. Sci., 2014, vol. 39, pp. 683–706. doi 10.1016/j.progpolymsci.2013.07.006

    Article  CAS  Google Scholar 

  23. Tashiro, K., Abe, Y., and Kobayashi, M., Computer simulation of structure and ferroelectric phase transition of vinylidene fluoride copolymers (1) vdf content dependence of the crystal structure, Ferroelectrics, 1995, vol. 171, pp. 281–297. doi 10.1080/00150199508018440

    Article  CAS  Google Scholar 

  24. Ermolinskaya, T.M., Fen’ko, L.A., and Bil’dyukevich, A.V., Effect of a solvent on the solution behavior of Teflon-42 and the structure of related films, Polym. Sci., Ser. A, 2008, vol. 50, pp. 1065–1070. doi 10.1134/S0965545X08100076

    Article  Google Scholar 

  25. Tashiro, K., Kaito, H., and Kobayashi, M., Structural changes in ferroelectric phase transitions of vinylidene fluoride-tetrafluoroethylene copolymers: 1. Vinylidene fluoride content dependence of the transition behavior, Polymer, 1992, vol. 33, pp. 2915–2928. doi 10.1016/0032-3861(92)90077-A

    Article  CAS  Google Scholar 

  26. Bormashenko, Y., Pogreb, R., Stanevsky, O., and Bormashenko, E., Vibrational spectrum of PVDF and its interpretation, Polym. Test., 2004, vol. 23, pp. 791–796. doi 10.1016/j.polymertesting.2004.04.001

    Article  CAS  Google Scholar 

  27. Kochervinskii, V.V., Kiselev, D.A., Malinkovich, M.D., Pavlov, A.S., and Malyshkina, I.A., Local piezoelectric response, structural and dynamic properties of ferroelectric copolymers of vinylidene fluoride–tetrafluoroethylene, Colloid Polym. Sci., 2014. doi 10.1007/s00396-014-3435-1

    Google Scholar 

  28. Delpech, M.C., Coutinho, F.M., and Habibe, M.E.S., Bisphenol A-based polycarbonates: Characterization of commercial samples, Polym. Test., 2002, vol. 21, pp. 155–161. doi 10.1016/S0142-9418(01)00063-0

    Article  CAS  Google Scholar 

  29. Liao, C.-C., Wang, C.-C., Shih, K.-C., and Chen, C.-Y., Electrospinning fabrication of partially crystalline bisphenol A polycarbonate nanofibers: Effects on conformation, crystallinity, and mechanical properties, Eur. Polym. J., 2011, vol. 47, pp. 911–924. doi 10.1016/j.eurpolymj.2011.01.006

    Article  CAS  Google Scholar 

  30. Heymans, N. and van Rossum, S., FTIR investigation of structural modifications during low-temperature ageing of polycarbonate, J. Mater. Sci., 2002, vol. 37, pp. 4273–4277. doi 10.1023/A:1020636115507

    Article  CAS  Google Scholar 

  31. Kochervinskii, V.V., Glukhov, V.A., Sokolov, V.G., Romadin, V.F., Murasheva, Y.M., Ovchinnikov, Y.K., Trofimov, N.A., and Lokshin, B.V., Microstructure and crystallization of isotropic films made of vinylidene fluoride-tetrafluoro-ethylene copolymer, Polym. Sci. U.S.S.R., 1988, vol. 30, no. 9, pp. 2100–2108. doi 10.1016/0032-3950(88)90067-6

    Article  Google Scholar 

  32. Murata, Y., Curie transition in poled and unpoled copolymer of vinylidene fluoride and tetrafluoroethylene, Polym. J., 1987, vol. 19, pp. 337–346. doi 10.1295/polymj.19.337

    Article  CAS  Google Scholar 

  33. Murata, Y. and Koizumi, N., Ferroelectric behavior in vinylidene fluoride-tetrafluoroethylene copolymers, Ferroelectrics, 1989, vol. 92, pp. 47–54. doi 10.1080/00150198908211305

    Article  CAS  Google Scholar 

  34. Hu, X. and Lesser, A.J., Enhanced crystallization of bisphenol-A polycarbonate by nano-scale clays in the presence of supercritical carbon dioxide, Polymer, 2004, vol. 45, pp. 2333–2340. doi 10.1016/j.polymer. 2003.12.079

    Article  CAS  Google Scholar 

  35. Li, L., Twum, E.B., Li, X., McCord, E.F., Fox, P.A., Lyons, D.F., and Rinaldi, P.L., 2D-NMR characterization of sequence distributions in the backbone of poly(vinylidene fluoride-co-tetrafluoroethylene), Macromolecules, 2012, vol. 45, pp. 9682–9696. doi 10.1021/ma3020307

    Article  CAS  Google Scholar 

  36. Cais, R.E. and Kometani, J.M., Structural studies of vinylidene fluoride-tetrafluoroethylene copolymers by nuclear magnetic resonance spectroscopy, Anal. Chim. Acta, 1986, vol. 189, pp. 101–116. doi 10.1016/S0003-2670(00)83717-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Bolbasov.

Additional information

Original Russian Text © E.N. Bolbasov, V.M. Buznik, K.S. Stankevich, S.I. Goreninskii, Yu.N. Ivanov, A.A. Kondrasenko, V.I. Gryaznov, A.N. Matsulev, S.I. Tverdokhlebov, 2017, published in Perspektivnye Materialy, 2017, No. 10, pp. 5–17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolbasov, E.N., Buznik, V.M., Stankevich, K.S. et al. Composite Materials Obtained via Two-Nozzle Electrospinning from Polycarbonate and Vinylidene Fluoride/Tetrafluoroethylene Copolymer. Inorg. Mater. Appl. Res. 9, 184–191 (2018). https://doi.org/10.1134/S2075113318020065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318020065

Keywords

Navigation