Skip to main content
Log in

Some problems of hydrogen in reactor structural materials: A review

  • Physico-Chemical Principles of Materials Development
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The review concerns some problems of hydrogen in the main reactor structural materials used in the core of nuclear reactors. Zirconium alloys, steels, and vanadium alloys, as well as the hydrogen and helium synergetic effect exerted on the radiation resistance, are considered. The main sources resulting in the accumulation of hydrogen isotopes in reactor materials are discussed. The causes and consequences of hydride embrittlement of zirconium alloys at relatively low temperatures are analyzed. It is shown that hydrogen can induce the embrittlement of vessel steels through the weakening interatomic bond forces and a stabilization of radiation-induced defects. It is demonstrated that hydrogen in the presence of helium behaves like a gas that enhances the irradiation effect on the microstructure and properties of materials in many cases. The irradiation with simultaneous introduction of hydrogen and helium causes, in particular, a catastrophic swelling of chromium steels and vanadium alloys, whereas in the case of austenitic steel the effect is less pronounced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalin, B.A., Platonov, P.A., Tuzov, Yu.V., et al., Structural materials for nuclear engineering, in Fizicheskoe materialovedenie. Uchebnik dlya vuzov (Physical Material Science: Manual for Higher Education Institutions), Kalin, B.A., Ed., Moscow: Nats. Issled. Yad. Univ., MIFI, 2012, vol. 6.

    Google Scholar 

  2. Koutsky, J. and Kocik, J., Radiation Damage of Structural Materials, Materials Science, Monogr., vol. 79, Amsterdam: Elsevier, 1994.

    Google Scholar 

  3. Kasatkin, G.N., Vodorod v konstruktsionnih stalyakh (Hydrogen in Structural Steels), Moscow: Intermet Inginiring, 2003.

    Google Scholar 

  4. Zaimovskii, A.S., Nikulina, A.V., and Reshetnikov, N.G., Tsirkonievye splavy v yadernoi energetike (Zirconium Alloys in Nuclear Power Energetics), Moscow: Energoatomisdat, 1994.

    Google Scholar 

  5. Shmakov, A.A., The mechanism of hydrogen absorption by zirconium alloys, At. Tekh. Rubezhom., 2000, no. 6, pp. 16–20.

    Google Scholar 

  6. Neklyudov, I.M. and Tolstolutskaya, G.D., Helium and hydrogen in structural materials, Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Povrezhdenii Radiats. Materialoved., 2003, no. 3 (83), pp. 3–14.

    Google Scholar 

  7. Sekimura, N., Iwai, T., Arai, Y., Yonamine, S., et al., Synergistic effects of hydrogen and helium on microstructural evolution in vanadium alloys by triple ion beam irradiation, J. Nucl. Mater., 2000, vols. 283–287, pp. 224–228.

    Article  Google Scholar 

  8. Tanaka, T., Oka, K., Ohnuki, S., et al., Synergistic effect of helium and hydrogen for defect evolution under multi-ion irradiation of Fe–Cr ferritic alloys, J. Nucl. Mater., 2004, vol. 329–333, pp. 294–298.

    Article  Google Scholar 

  9. Kalin, B.A., Kalashnikov, A.N., Chernov, I.I., and Shmakov, A.A., Hydrogen problems in reactor materials, Materialy 7-i mezhdunarodnoi shkoly molodykh uchenykh i spetsialistov IHISM’11 JUNIOR, g. Zvenigorod, 24–26 oktyabrya 2011 g. (Proc. 7th Int. Workshop of Young Scientists and Professionals IHISM’11 JUNIOR, Zvenigorod, October 24–26, 2011), Sarov: Ross. Fed. Yad. Tsentr, Vseross. Nauchno-Issled. Inst. Eksp. Fiz., 2012, pp. 10–54.

    Google Scholar 

  10. Kobylyanskii, G.P. and Novoselov, A.E., Radiatsionnaya stoikost’ tsirkoniya i splavov na ego osnove. Spravochnye materialy po reaktornomu materialovedeniyu (Radiation Resistance of Zirconium and Its Alloys: Handbook on Reactor Materials Science), Dimitrovgrad: Nauchno-Issled. Inst. At. Reakt., 1996.

    Google Scholar 

  11. Nikulin, S.A., Markelov, V.A., Fateev, B.M., et al., Tsirkonii v atomnoi promyshlennosti (Zirconium in the Atomic Industry), Moscow: Tsentr. Nauchno-Issled. Inst. Uprav., Ekon. Inf., Minist. At. Prom. Ross. Fed., 1989, no. 17.

    Google Scholar 

  12. Shmakov, A.A., Kalin, B.A., and Ioltukhovskii, A.G., A theoretical study of the kinetics of hydride cracking in zirconium alloys, Met. Sci. Heat Treat., 2003, vol. 45, nos. 7–8, pp. 315–320.

    Article  CAS  Google Scholar 

  13. Krasikov, E.A. and Amajev, A.D., Hydrogen-irradiated steel interaction during alternating hydrogenation and annealing, J. Nucl. Mater., 2000, vols. 283–287, part 1, pp. 846–848.

    Article  Google Scholar 

  14. Vainman, A.B., Melekhov, R.K., and Smiyan, O.D., Vodorodnoye okhrupchivaniye elementov kotlov vysokogo davleniya (Hydrogen Embrittlement of the Elements of High-Pressure Boilers), Kiev: Naukova Dumka, 1991.

    Google Scholar 

  15. Wilson, K.L. and Baskes, M.I., Deuterium trapping in irradiated 316 stainless steel, J. Nucl. Mater., 1978, vols. 76–77, pp. 291–297.

    Article  Google Scholar 

  16. Wilson, K.L., Pontau, A.E., Haggmark, L.G., et al., Trapping of deuterium in helium-damaged steels: He+ fluence dependence, J. Nucl. Mater., 1981, vols. 103–104, pp. 493–497.

    Article  Google Scholar 

  17. Neklyudov, I.M., Ozhigov, L.S., Shilyaev, B.A., et al., Hydrogen in stainless steels of vessel internal structural elements of the VVER-1000 reactor, Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Povrezhdenii Radiats. Materialoved., 2003, no. 3, pp. 47–50.

    Google Scholar 

  18. Zaluzhnyi, A.G., Kalin, B.A., Kopytin, V.P., Kozodaev, M.A., and Suvorov, A.L., Hydrogen evolution from austenitic steel irradiated with high-temperature pulse plasma, Tech. Phys., 2001, vol. 46, no. 1, pp. 29–33.

    Article  CAS  Google Scholar 

  19. Ruzhitskii, V.V., Karpov, S.A., Neklyudov, I.M., et al., Influence of surface conditions on thermal desorption of deuterium from steel 18Cr10NiTi, Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Povrezhdenii Radiats. Materialoved., 2003, no. 3, pp. 167–169.

    Google Scholar 

  20. Neklyudov, I.M., Shilyaev, B.A., Voevodin, V.N., and Shepelev, A.G., Materials science problems of modern and prospective nuclear power industry, Trudy XVI mezhdunarodnoi konferentsii po fizike radiatsionnykh povrezhdenii, g. Alushta, 10–15 sentyabra 2004 g. (Proc. XVI Int. Conf. on Physics of Radiation Damages, Alushta, September 10–15, 2004), Kharkov: Talent-Treiding, 2004, pp. 381–383.

    Google Scholar 

  21. Tolstolutskaya, G.D., Ruzhitskii, V.V. Kopanets, I.E., et al., Effect of ion-implanted helium in the deuterium retention in steel 18Cr10NiTi, Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Povrezhdenii Radiats. Materialoved., 2004, no. 3, pp. 3–9.

    Google Scholar 

  22. Bandurko, V.V., Pisarev, A.A., and Chernov, I.I., Influence of carbon content in nickel and iron on capture of ion-implanted deuterium, Izv. Akad. Nauk SSSR, Ser.: Fiz., 1990, vol. 54, no. 7, pp. 1411–1413.

    CAS  Google Scholar 

  23. Beghini, M., Benamati, G., Bertini, L., and Valentini, R., Effect of hydrogen on tensile properties of martensitic steels for fusion application, J. Nucl. Mater., 1998, vols. 258–263, pp. 1295–1299.

    Article  Google Scholar 

  24. Lee, J.S., Kimura, A., Ukai, S., and Fujiwara, M., Effects of hydrogen on the mechanical properties of oxide dispersion strengthening steels, J. Nucl. Mater., 2004, vols. 329–333, pp. 1122–1126.

    Article  Google Scholar 

  25. Borodin, O.V., Bryk, V.V., Kalchenko, A.S., et al., Synergistic effects of helium and hydrogen on self-ion induced swelling of austenitic 18Cr10NiTi stainless steel, J. Nucl. Mater., 2013, vol. 442, pp. S817–S820.

    Article  CAS  Google Scholar 

  26. Natesan, K. and Soppet, W.K., Performance of V–Cr–Ti alloys in a hydrogen environment, J. Nucl. Mater., 2000, vols. 283–287, pp. 1316–1321.

    Article  Google Scholar 

  27. Aoyagi, K., Torres, E.P., Suda, T., and Ohnuki, S., Effect of hydrogen accumulation on mechanical property and microstructure of V–Cr–Ti alloys, J. Nucl. Mater., 2000, vols. 283–287, pp. 876–879.

    Article  Google Scholar 

  28. Chen, J., Xu, Z., and Yang, L., The influence of hydrogen on tensile properties of V-base alloys developed in China, J. Nucl. Mater., 2002, vols. 307–311, pp. 566–570.

    Article  Google Scholar 

  29. Torres, P., Aoyagi, K., Suda, T., et al., Hydride formation and fracture of vanadium alloys, J. Nucl. Mater., 2002, vol. 307–311, pp. 625–629.

    Article  Google Scholar 

  30. Picraux, S.T., Bottiger, J., and Rud, N., Enhanced hydrogen trapping due to He ion damage, J. Nucl. Mater., 1976, vol. 63, pp. 110–114.

    Article  CAS  Google Scholar 

  31. Hatano, Y., Nanjo, Y., Hayakawa, R., and Watanabe, K., Permeation of hydrogen through vanadium under helium ion irradiation, J. Nucl. Mater., 2000, vols. 283–287, pp. 868–871.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Chernov.

Additional information

Original Russian Text © I.I. Chernov, M.S. Staltsov, B.A. Kalin, L.Yu. Guseva, 2017, published in Perspektivnye Materialy, 2017, No. 4, pp. 5–15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernov, I.I., Staltsov, M.S., Kalin, B.A. et al. Some problems of hydrogen in reactor structural materials: A review. Inorg. Mater. Appl. Res. 8, 643–650 (2017). https://doi.org/10.1134/S2075113317050094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113317050094

Keywords

Navigation