Skip to main content
Log in

Effect of electromechanical treatment on the structure and microhardness of plasma coating from Cr–Mn steel

  • Plasma Chemical Methods of Production and Treatment of Materials
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The effect of electromechanical treatment (EMT) on the structure and microhardness of a plasma coating prepared from austenite steel is investigated at 25 and 500°C. The EMT current is varied from 400 to 800 A, the treatment rate is 0.81–3.39 m/min, and the number of passes is from one to four. Consolidation of the coating is observed after EMT. Its microhardness increases from 1866 to 4618 MPa under EMT without heating of the sample and to 5814 MPa under EMT with heating to 500°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalita, V.I. and Komlev, D.I., Plazmennye pokrytiya s nanokristallicheskoi i amorfnoi strukturoi (Plasma Coatings with Nanocrystalline and Amorphous Structure), Moscow, Biblioteka, 2008.

    Google Scholar 

  2. Garcia-Alonso, D., Serres, N., Demian, C., Costil, S., Langlade, C., and Coddet, C., Pre-during-post-aser processes to enhance the adhesion and mechanical properties of thermal-sprayed coatings with a reduced environmental impact, J. Therm. Spray Technol., 2001, vol. 20, pp. 719–735.

    Article  Google Scholar 

  3. Karl-Heinz, F. and Agnes, O., Oberflachenfeinwalzen plazmagespritzter Metallschichten, Schweiss und Schneid, 1996, vol. 6, pp. 331–333.

    Google Scholar 

  4. Tillmann, W., Vogli, E., Krebs, B., Tekkaya, A.E., Brosius, A., and Franzen, V., Densification of atmospheric plasma sprayed wear resistant coatings, in Proc. Int. Thermal Spray Conf. May 4–7, 2009, Las Vegas, USA. Eds. B. Marple, M. Hyland. ASM, 2009, pp. 1045–1051.

    Google Scholar 

  5. Pribytkov, G.A., Durakov, V.G., Polev, I.V., and Vagner, M.I., Structure–abrasion wear resistivity relationship of titanium carbide–metal matrix cermets, produced by sintering and by electron-beam facing, Friction Wear, 1999, vol. 20, pp. 393–399.

    Google Scholar 

  6. Kalita, V.I., Bagmutov, V.P., Zaharov, I.N., Komlev, D.I., and Ivannikov, A.Yu., Strengthening of plasma coatings by electromechanical treatment, Fiz. Khim. Obrab. Mater., 2008, no. 1, pp. 38–42.

    Google Scholar 

  7. Komlev, D.I., Kalita, V.I., Radyuk, A.A., Menshikov, G.A., Vlasenko, A.N., and Ivannikov, A.Yu., Effect of the contact seam welding on plasma coatings, Fiz. Khim. Obrab. Mater. 2013, No. 4, pp. 69–77.

    Google Scholar 

  8. Bagmutov, V.P., Kalita, V.I., Zaharov, I.N., Ivannikov, A.Yu., and Zaharova, E.B., Structure and microhardness of plasma coatings hardened by nanoparticles after electromechanical treatment. Steel in Translation, 2009, vol. 39, pp. 870–877.

    Article  Google Scholar 

  9. Komlev, D.I., Kalita, V.I., Menshikov, G.A., Vlasenko, A.N., Radyuk, A.A., and Ivannikov, A.Yu., The effect of resistance spot welding on plasma sprayed coatings, Inorg. Mater.: Appl. Res., 2013, vol. 4, pp. 236–246.

    Article  Google Scholar 

  10. Isakaev, M.-E.Kh., Ilichyov, M.V., Ochkan, A.L., and Filippov, G.A., Effective method for prolongation of the life time of railway frogs by plasma facing, Technol. Metal., 2003, no. 7, pp. 29–34.

    Google Scholar 

  11. Becker, M. and Klemm, H., Handbuch der metallographischen Atzverfahren. A comprehensive collection of etching recipes, VEB Deutscher Verlag fur Grundstoffindustrie, Leipzig, 1966.

    Google Scholar 

  12. Bagmutov, V.P., Zakharov, I.N., Ivannikov, A.Yu., and Poplavsky, E.V., Thermal process simulation at electromechanical hardening of plasma coverings, Vestn. Voronezh. Gos. Tekhn. Univ., 2007, vol. 3, no. 8, pp. 135–140.

    Google Scholar 

  13. Dudkina, N.G., Zakharov, I.N., Ermolov, V.S., and Ivannikov, A.Yu., Dependence of microhardness of a regular discrete structures of the surface layer of a mild steel on the conditions of electromechanical treatment, Probl. Mashinostr. Nadezhn. Mashin, 2006, no. 5, pp. 62–68.

    Google Scholar 

  14. Pustov, Yu.A., Zolotarev, A.S., Gladkikh, N.A., Kalita, V.I., Komlev, D.I., Radyuk, A.A., and Ivannikov, A.Yu., Structure and corrosion–electrochemical behavior of systems “amorphous plasma coating based on iron— steel substrate”, Fiz. Khim. Obrab. Mater., 2015, no. 3, pp. 35–43.

    Google Scholar 

  15. DIN 50150-1976. Testing of Steel and Cast Steel; Conversion Table for Vickers Hardness, Brinell Hardness, Rockwell Hardness and Tensile Strength, 1976.

  16. Otsubo, F., Era, H., Uchida, T., and Kishitake, K., Properties of Cr3C2–NiCr cermet coating sprayed by high power plasma and high velocity oxy–fuel processes, J. Thermal Spray Technol., 2000, vol. 9, pp. 499–504.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Yu. Ivannikov, V. I. Kalita or V. P. Bagmutov.

Additional information

Original Russian Text © A.Yu. Ivannikov, V.I. Kalita, D.I. Komlev, A.A. Radyuk, V.P. Bagmutov, I.N. Zakharov, S.N. Parshev, 2015, published in Fizika i Khimiya Obrabotki Materialov, 2015, No. 5, pp. 44–53.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivannikov, A.Y., Kalita, V.I., Komlev, D.I. et al. Effect of electromechanical treatment on the structure and microhardness of plasma coating from Cr–Mn steel. Inorg. Mater. Appl. Res. 7, 363–371 (2016). https://doi.org/10.1134/S2075113316030096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113316030096

Keywords

Navigation