Skip to main content
Log in

Alloying principles and requirements for production technologies of new generation high-strength vessel steels

  • Physical Metallurgy. Metallurgy
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Alloying principles for new high-strength cold-resistant steels for marine equipment with a yield strength of 500–800 MPa are developed. The technology is based on a lower amount of expensive alloying elements. The production technologies for that are shown. Optimum structure requirements on high-strength steels used for marine engineering are discussed. Hot plastic working schemes for industry with immediate quenching and posttempering that provide the formation of nanosized structural elements are described. The results of industrial testing of new high-strength steels and their comparison with the properties of the known hardened and tempered steels are represented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Golosienko, S.A., Soshina, T.V., and Khlusova, E.I., New high-resistance cold-resistance steels for arctic application, Proizvodstvo Prokata, 2014, No. 2, pp. 17–25.

    Google Scholar 

  2. Gol’dshtein, M.I., Grachev, S.V., and Veksler, Yu.G., Spetsial’nye stali (Special Steels), Moscow: Metallurgiya, 1985.

    Google Scholar 

  3. Kelly, A., Vysokoprochnye Materialy (Strong Solids), Clarendon, 1973. Moscow: Mir, 1976.

    Google Scholar 

  4. Gorynin, I.V., Rybin, V.V., Malyshevskii, V.A., Legostaev, Yu.L., and Semicheva, T.G., Fundamental aspects of production and application of high-strength structural steel, Voprosy Materialoved., 1999. No. 3(20).

  5. Trefilov, V.I., Role of interatomic connection type at brittle destruction, in Fizicheskaya priroda khrupkogo razrusheniya metallov (Physical Nature of Brittle Destruction of Metals), Kiev: Naukova Dumka, 1965.

    Google Scholar 

  6. Sarrak, V.I. and Entin, R.I., On the effect of processes of interaction of dislocation with interstitial atoms on brittle destruction of iron, in Fizicheskaya priroda khrupkogo razrusheniya metallov (Physical Nature of Brittle Destruction of Metals), Kiev: Naukova Dumka, 1965.

    Google Scholar 

  7. Rybin, V.V., Malyshevskii, V.A., and Semicheva, T.G., Development of theory of secondary hardening during creation of high-strength hull steel, Vopr. Materialoved., 2005, No. 2, pp. 55–68.

    Google Scholar 

  8. Gorynin, I.V., Rybin, V.V., Malyshevskii, V.A., Semicheva, T.G., and Sherokhina, L.G., Transformations of dislocation martensite in tempering secondary-hardening steel, Metal Sci. Heat Treat., 1999, vol. 41, pp. 377–383.

    Article  CAS  Google Scholar 

  9. Moroz, L.S., Mekhanika i fizika deformatsii i razrusheniya materialov (Mechanics and Physics of Material Deformation and Destruction), Leningrad: Mashinostroenie, 1984.

    Google Scholar 

  10. De Ardo, A.L., Modern thermomecanical processing of microalloyed steel, Proc. Conf. Microalloying-95 “A Physical Metallurgy Perspective”, Pittsburg, 1995, pp. 15–33.

    Google Scholar 

  11. Smagorinskii, M.E., Bulyanda, A.A., and Kudryashov, S.V., Spravochnik po termomekhanicheskoi i termotsiklicheskoi obrabotke metallov (A Handbook on Thermomechanical and Thermal Cyclic Metal Treatment), Smagorinskii, M.E., Ed., St. Petersburg: Politekhnika, 1992.

  12. Lagneborg, R., Sivetski, T., Zajac, S., and Hatchinson, B., Rol’ vanadiya v mikrolegirovannykh stalyakh (Role of Vanadium in Microalloyed Steels), Smirnov, L. A., Ed., Scand. J. Metall., 1999. Ekaterinburg: Ural. Inst. Metal., 2001.

  13. Zajac, S., Phase extraction and grain refinement in vanadium-containing steels, in Sbornik trudov seminara ”Ispol’zovanie vanadiya v stali” (Proc. Semin. “Use of Vanadium in Steel”), Moscow, 2002, pp. 224–258.

    Google Scholar 

  14. Shanmugam, S., Tanniru, M., Misra, R.D.K., Panda, D., and Jansto, S., Precipitation in V bearing microalloyed steel containing low concentrations of Ti and Nb, Mater. Sci. Technol., 2005, vol. 21, pp. 883–892.

    Article  CAS  Google Scholar 

  15. Luton, M.J., Interaction between deformation, recrystallization and precipitation in niobium steels, Metal. Trans. A, 1980, vol. 11, pp. 411–420.

    Article  Google Scholar 

  16. Zisman, A.A., Soshina, T.V., and Khlusova, E.I., Maps of structure changes in austenite of low carbon steel 09CrNi2MoCuV during hot deformation and their use to improve industrial technologies, Inorg. Mater.: Appl. Res., 2014, vol. 5, pp. 570–577.

    Article  Google Scholar 

  17. Odesskii, P.D. and Smirnov, L.A., Vanadium and niobium in microalloyed steel for metal structures, Steel in Translation, 2005, vol. 35, pp. 63–73.

    Google Scholar 

  18. Matrosov, M.Yu., Efron, L.I., Kichkina, A.A., and Lyasotskii, I.V., A study of the microstructure of niobiummicroalloyed pipe steel after different modes of controlled rolling with accelerated cooling, Metal Sci. Heat Treat., 2008, vol. 50, pp. 136–141.

    Article  CAS  Google Scholar 

  19. Cao Jian-chun, Liu Qing-you, Yong Qi-long, and Sun Xin-jun, Effect of niobium on isothermal transformation of austenite to ferrite in HSLA low-carbon steel, J. Iron Steel Res., 2006, vol. 14, pp. 51–55.

    Google Scholar 

  20. Olasolo, M., Uranga, P., and Rodriguez-Ibabe, J.M., Effect of austenite microstructure and cooling rate on transformation characteristics in a low carbon Nb-V microalloyed steel, Mater. Sci. Eng. A, 2011, vol. 528, pp. 2559–2569.

    Article  Google Scholar 

  21. Braun, M.B., Mikrolegirovanie stali (Steel Microalloying), Kiev: Naukova Dumka, 1982.

    Google Scholar 

  22. Gol’dshtein, M.I. and Farber, V.M., Dispersionnoe uprochnenie stali (Dispersion Strengthening of Steel), Moscow: Metallurgiya, 1979.

    Google Scholar 

  23. Davenport, A.T., Brossard, L.C., and Miner, R.E., Precipitation in microalloyed high-strength low-alloy steels, J. Metals, 1975, vol. 27, pp. 21–27.

    Google Scholar 

  24. Kelly, A., Vysokoprochnye Materialy (Strong Solids), Clarendon, 1973. Moscow: Mir, 1976.

    Google Scholar 

  25. Rybin, V.V., Bol’shie plasticheskie deformatsii i razrushenie metallov (Large Plastic Deformations and Destruction of Metals), Moscow: Metallurgiya, 1986.

    Google Scholar 

  26. Rybin, V.V., Structural kinetic aspects of the physics of evolution of plastic deformation, Russ. Phys. J., 1991, vol. 34, pp. 186–198.

    Google Scholar 

  27. Rybin, V.V., Rubtsov, A.S., and Kodzhaspirov, G.E., Structure transformations in steel at rolling with different degree and graininess of deformation, Fiz. Met. Metalloved., 1984, vol. 58, pp. 774–781.

    CAS  Google Scholar 

  28. Zolotorevskii, N.Yu., Zisman, A.A., Panpurin, S.N., Titovets, Yu.F., Golosienko, S.A., and Khlusova, E.I., Effect of the grain size and deformation substructure of austenite on crystal geometry of bainite and martensite in low-carbon steels, Metalloved. Term. Obrab. Metal., 2014, vol. 55, pp. 550–558.

    Google Scholar 

  29. Zvezdin, Yu.I., Kudymov, A.D., Rybin, V.V., and Sherokhina, L.G., Cooling speed effect on structure formation and mechanical properties of 15Kh3NMF steel, Voprosy Sudostroeniya, seriya Metallovedenie, Metallurgiya, 1985, No. 44, pp. 12–22.

    Google Scholar 

  30. Konopleva, E.V., Spasskii, M.N., and Bayazitov, V.M., Peculiarities of strucrure and mechanical properties of steels with martensite-bainite structure, Fiz. Met. Metalloved., 1989, vol. 67, pp. 570–574.

    CAS  Google Scholar 

  31. Kaletin, Yu.M., Ryzhov, A.G., and Kaletin, A.Yu., Alloying and heat treatment of steels with bainite structure, Metal Sci. Heat Treat., 1987. vol. 29, 731–735.

    Article  Google Scholar 

  32. Malyshevskii, V.A., Semicheva, T.G., and Khlusova, E.I., Effect of alloying elements and structure on the properties of low-carbon heat-treatable steel, Metal Sci. Heat Treat., 2001, vol. 43, pp. 331–335.

    Article  CAS  Google Scholar 

  33. Semicheva, T.G., Sherokhina, L.G., and Khlusova, E.I., Processes of carbide-formation and brittleness during tempering of ship steel, Probl. Mater. Sci., 2005, No. 2, pp. 69–79.

    Google Scholar 

  34. Motovilina, G.D., Golosienko, S.A., and Khlusova, E.I., Possibilities of increasing strength characteristics of economically alloyed high-strength steels due to the formation of nanosized carbides, Voprosy Materialoved., 2010, No. 4, pp. 27–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Oryshchenko.

Additional information

Original Russian Text © A.S. Oryshchenko, E.I. Khlusova, S.A. Golosienko, 2014, published in Voprosy Materialovedeniya, 2014, No. 2, pp. 9–25.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oryshchenko, A.S., Khlusova, E.I. & Golosienko, S.A. Alloying principles and requirements for production technologies of new generation high-strength vessel steels. Inorg. Mater. Appl. Res. 6, 547–558 (2015). https://doi.org/10.1134/S207511331506009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207511331506009X

Keywords

Navigation