Skip to main content
Log in

Tribotechnical properties of antifriction coatings based on composite materials

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Results of the wear tests of composite antifriction coatings based on aluminum alloy reinforced with micron sized ceramic particles in comparison with coatings based on babbit containing carbon nanotubes (CNTs) are discussed. It is shown that the introduction of the reinforcing particles in the form of the silicon carbide or CNTs into the matrix alloys based on aluminum and babbit stabilizes the dry sliding friction process and promotes improvement of the tribological characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xenevich, I.P., Science in tribology and problems of applied mechanics terrestrial mobile machines, Privodnaya Tekhnika, 2003, no. 5, pp. 2–5.

    Google Scholar 

  2. Suresh, S. and Mortensen, A., Fundamentals of Functionally Graded Materials: Processing and Thermomechanical Behavior of Graded Materials and MetalCeramic Composites, London: IOM Communications, 1998.

    Google Scholar 

  3. Mikheev, R.S. and Chernyshova, T.A., Alumomatrichnye kompozitsionnye materialy s karbidnym uprochneniem dlya resheniya zadach novoy tekhniki (AluminumMatrix Composite Materials with Carbide Hardening for the Solution of Problems of New Euipment), Moscow: Mask, 2013.

    Google Scholar 

  4. Chernyshova, T.A., Panfilov, A.V., and Panfilov, A.A., Application of aluminum-matrix composite materials in friction units of industrial and transport equipment, Zagotovit. Proizvod. Mashinostr., 2006, no. 5, pp. 38–43.

    Google Scholar 

  5. Chernyshova, T.A., Mikheev, R.S., Kalashnikov, I.E., and Kharlamov, E.I., Development and testing of Al–SiC and Al–TiC composite materials for application in friction units of oil-production equipment, Inorg. Mater.: Appl. Res., 2011, vol. 2, pp. 322–329.

    Google Scholar 

  6. Dasgupta, R., Aluminum alloy-based metal matrix composites: A potential material for wear resistant application, Int. Scholar. Res. Network (ISRN) Metallur., 2012, Art. ID 594573, pp. 1–14.

    Google Scholar 

  7. Mikheev, P.C., Chernyshova, T.A., and Kobeleva, L.I., Tribotechnical properties of disperse filled Al–TiC composite materials, Materialovedeniye, 2011, no. 1, pp. 14–22.

    Google Scholar 

  8. Miyamoto, Y., Functionally Graded Materials: Design, Processing and Applications, Boston, MA: Kluwer Academic, 1999.

    Book  Google Scholar 

  9. Kevorkijan, V., Functionally graded aluminum-matrix composites, Am. Ceram. Soc. Bull., 2003, vol. 82, no. 2, pp. 33–37.

    Google Scholar 

  10. Kobernik, N.V., Chernyshov, G.G., Gvozdev, P.P., Chernyshova, T.A., Kobeleva, L.I., and Vaganov, V.E., Antifrictional properties of the coverings received by a plasma babbit welding with carbon nanotubes, Svarka Diagnostika, 2013, no. 3, pp. 27–31.

    Google Scholar 

  11. Kobernik, N.V., Chernyshov, G.G., Mikheev, R.S., Chernyshova, T.A., and Kobeleva, L.I., Arc welding of wearproof composite coverings, Fiz. Khim. Obrab. Mater., 2009, no. 1, pp. 51–55.

    Google Scholar 

  12. Mikheev, R.S., Kobernik, N.V., Chernyshov, G.G., Chernyshova, T.A., Panfilov, A.V., Panfilov, A.A., Panfilov, A.A., and Petrunin, A.V., Prutki iz alumomatrichnogo kompozitsionnogo materiala dlya naplavki iznosostoikikh kompozitsionnykh pokrytii (Bars from aluminum-matrix composite material for surfacing of wear resistant composite coating). Patent No., 2361710, Rus. Feder., MPK B23 K35/28, Bull. No. 20.

  13. Mikheev, R.S., Kobernik, N.V., and Chernyshov, G.G., Influence of filler composite materials composition on weld pool fluidity, Svarka Diagnostika, 2012, no. 6, pp. 11–15.

    Google Scholar 

  14. Shipway, P.H., Kennedy, A.R., and Wilkes, A.J., Sliding wear behavior of aluminum-based metal matrix composites produced by a novel liquid route, Wear, 1998, vol. 216, pp. 160–171.

    Article  CAS  Google Scholar 

  15. Chichinadze, A.V., Berliner, E.M., and Brown, E.D., Trenie, iznos, smazka (tribologiya i tribotekhnika) (Friction, Wear and Greasing (Tribology and Tribotechnics), Moscow: Mashinostroenie, 2003.

    Google Scholar 

  16. Penkin, N.S., Penkin, A.N., and Serbin, V.M., Osnovy tribologii i tribotekhniki (Fundamentals of Tribology and Tribotechnics), Moscow: Mashinostroenie, 2008.

    Google Scholar 

  17. Biswas, S.K., Some mechanisms of tribofilm formation in metal/metal and ceramic/metal sliding interaction, Wear, 2000, vol. 245, pp. 178–189.

    Article  CAS  Google Scholar 

  18. Sato, H., Murase, T., Fujii, T., Onaka, S., Watanabe, Y., and Kato, M., Formation of wear-induced layer with nanocrystalline structure in Al–Al3Ti functionally graded material, Acta Mater., 2008, vol. 56, pp. 4549–4558.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Mikheev.

Additional information

Original Russian Text © R.S. Mikheev, N.V. Kobernik, I.E. Kalashnikov, L.K. Bolotova, L.I. Kobeleva, 2015, published in Perspektivnye Materialy, 2015, No. 3, pp. 48–54.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikheev, R.S., Kobernik, N.V., Kalashnikov, I.E. et al. Tribotechnical properties of antifriction coatings based on composite materials. Inorg. Mater. Appl. Res. 6, 493–497 (2015). https://doi.org/10.1134/S2075113315050111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113315050111

Keywords

Navigation