Skip to main content
Log in

Erosion of materials under the effect of compression plasma flows

  • Physico-Chemical Principles of Materials Development
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Erosion of the surface of St3-type steel and BrB2-type bronze samples as well as bronze and copper samples with zirconium coating under the effect of compression plasma flows is studied. The results show the increase in mass removed from the surface of samples with the growth of energy absorbed by the surface layer and with the growth of the number of pulses. Probable mechanisms of erosion have been discussed. Erosion leads to the decrease in the coating element concentration in the alloyed layer in the case of the coating/substrate system treatment. This effect depends on thermal characteristics of the treated material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mirkin, L.I., Fizicheskiye osnovy obrabotki materialov luchami lazera (Physical Foundations of Material Treatment by Laser Beams), Moscow: Mos. Gos. Univ., 1975.

    Google Scholar 

  2. Anisimov, S.I. and Lukyanchuk, B.S., Selected problems of laser ablation theory, Phys.-Usp., 2002, vol. 45, pp. 293–324.

    Article  CAS  Google Scholar 

  3. Tereshin, V.I., Garkusha, I.E., Bandura, A.N., Byrka, O.V., Chebotarev, V.V., Makhlaj, V.A., Solyakov, D.G., and Wuerz, H., Influence of plasma pressure gradient on melt layer macroscopic erosion of metal targets in disruption simulation experiments, J. Nucl. Mater., 2003, vol. 313–316, pp. 685–689.

    Article  Google Scholar 

  4. Bulgakov, L.V., Bulgakova, N.M., Burakov, I.M., et al., Sintez nanorazmernykh materialov pri vozdeistvii moshchnykh potokov energii na veshchestvo (Synthesis of Nanosized Materials under Effect of Powerful Energy Flows on Substance), Novosibirsk: Inst. Heat-Physics of Sibir. Branch Russ. Acad. Sci., 2009.

    Google Scholar 

  5. Boiko, V.I., Valyaev, A.N., and Pogrebnyak, A.D., Metal modification by high-power pulsed particle beams, Phys.-Usp., 1999, vol. 42, pp. 1139–1166.

    Article  CAS  Google Scholar 

  6. Ryabchikov, A.I., Petrov, A.V., Struts, V.K., Mytnikov, A.V., Usov, Yu.P., and Renk, T.J., Structural-phase composition and tribological characteristics of fullerenes containing carbonic coatings obtained using high-power ion beams, Surf. Coat. Technol., 2009, vol. 203, pp. 2608–2611.

    Article  CAS  Google Scholar 

  7. Makarov, G.N., Laser applications in nanotechnology: Nanofabrication using laser ablation and laser nanolithography, Phys.-Usp., 2013, vol. 56, pp. 643–682.

    Article  CAS  Google Scholar 

  8. Gribkov, V.A., Grigoryev, F.I., Kalin, B.A., and Yakushin, V.L., Perspektivnye radiatsionno-puchkovye tekhnologii obrabotki materialov (Advanced Radiation-Beams Technologies of Materials Treatment), Moscow: Krugly God, 2001.

    Google Scholar 

  9. Linke, J., Barabash, V.R., Bolt, H., Gervash, A., Mazul, I., Ovchinnikov, I., and Rödig, M., Erosion of metals and carbon based materials during disruptions — simulation experiments in plasma accelerators, J. Nucl. Mater., 1994, nos. 212–215, pp. 1195–1200.

    Google Scholar 

  10. Astashynski, V.M., Ananin, S.I., Askerko, V.V., Kostyukevich, E.A., Kuzmitski, A.M., Uglov, V.V., Cherenda, N.N., Anishchik, V.M., Sveshnikov, Yu.V., Astashynski, V.V., Kvasov, N.T., Danilyuk, A.L., Punko, A.V., and Pauleau, Y., Deposition of nanostructured metal coatings on modified silicon surfaces in magnetoplasma compressor, Vacuum, 2005, vol. 78, pp. 157–160.

    Article  CAS  Google Scholar 

  11. Uglov, V.V., Anishchik, V.M., Cherenda, N.N., Sveshnikov, Yu.V., Astashynski, V.M., Kostyukevich, E.A., Kuzmitski, A.M., and Askerko, V.V., The formation of a tungsten containing surface layer in a carbon steel by compression plasma flow, Surf. Coat. Technol., 2008, vol. 202, pp. 2439–2442.

    Article  CAS  Google Scholar 

  12. Uglov, V.V., Cherenda, N.N., Anishchik, V.M., Stalmashonak, A.K., Astashinski, V.M., and Mishchuk, A.A., et al., Formation of alloying layers in a carbon steel by compression plasma flows, Vacuum, 2007, vol. 81, pp. 1341–1344.

    Article  CAS  Google Scholar 

  13. Kalin, B.A., Skorov, D.M., and Yakushin, V.L., Problemy vybora materialov dlya termoyadernykh reaktorov: radiatsionnaya eroziya (Selection of Materials for Fusion Reactors: Radiation Erosion), Moscow: Energoatomizdat, 1985.

    Google Scholar 

  14. Grigoryev, I.S. and Meylikhov, Ye.Z., Fizicheskiye velichiny: spravochnik (Physical Quantities: Handbook), Moscow: Energoatomizdat, 1991.

    Google Scholar 

  15. Laskovnev, A.P., Cherenda, N.N., Basalay, A.V., Uglov, V.V., Anishchik, V.M., Astashinsky, V.M., and Kuzmitsky, A.M., Modification of copper surface by compression plasma flows, Probl. Phys., Mathem. Tech., 2013, no. 3, pp. 24–29.

    Google Scholar 

  16. Pliskovsky, V.Ya., Konstruktsionnye materialy i element vakuumnykh system (Structural Materials and Details of Vacuum Systems), Moscow: Mashinostroyeniye, 1976.

    Google Scholar 

  17. Astashinsky, V.M., Leyvi, A.Ya., Talala, K.A., Yalovets, A.P., Uglov, V.V., and Cherenda, N.N., Change in the relief of a target surface treated by compression plasma flows, J. Surf. Invest. X-ray, Synchr. Neutron Techn., 2013, vol. 7, pp. 1005–1012.

    Article  Google Scholar 

  18. Astashynski, V.M., Investigation of plasma parameters during the action of compression plasma flows on surfaces, Proc. 4th Int. Conf. on Plasma Physics and Plasma Technology Minsk: Institute of Molec. At. Phys. Nat. Acad. Sci. Belarus, 2003, vol. 2.

    Google Scholar 

  19. Maltsev, I.V. and Mirzoyev, A.A., Liquid iron viscosity: Molecular-dynamics simulation with an embeddedatom potential, Vestn. Yuzhn.-Ural. Gos. Univ.: Matem., Mekh., Fiz., 2009, no. 22, pp. 79–83.

    Google Scholar 

  20. Assael, M.J., Kalyva, A.E., Antoniadis, K.D., Banish, R.M., Egry, I., Wu, J., Kaschnitz, E., and Wakeham, W.A., Reference data for the density and viscosity of liquid copper and liquid tin, J. Phys. Chem. Ref. Data, 2010, vol. 39, p. 033105. http://dx.doi.org/10.1063/1.3467496

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Cherenda.

Additional information

Original Russian Text © N.N. Cherenda, A.P. Laskovnev, A.V. Basalai, V.V. Uglov, V.M. Astashynski, A.M. Kuzmitski, 2014, published in Perspektivnye Materialy, 2014, No. 11, pp. 5–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherenda, N.N., Laskovnev, A.P., Basalai, A.V. et al. Erosion of materials under the effect of compression plasma flows. Inorg. Mater. Appl. Res. 6, 114–120 (2015). https://doi.org/10.1134/S2075113315020070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113315020070

Keywords

Navigation