Skip to main content
Log in

Structure and properties of nonwoven materials based on copolymer of tetrafluoroethylene and vinyldenefluoride produced by aerodynamic formation

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Properties of nonwoven materials based on copolymer of tetrafluoroethylene and vinyldenefluoride produced by aerodynamic formation in a turbulent gas flow are investigated in the paper. By means of scanning microscopy, it is shown that synthesized nonwoven materials are characterized by high porosity and complicated spatial organization. By means of X-ray diffraction, infrared spectroscopy, combination scattering spectroscopy, thermogravimetric analysis, and differential scanning calorimetry, it is shown that fibers that form the nonwoven material are characterized by a crystal structure typical of ferrielectric phases. The quantitative content of residual solvents in the formed materials is determined. By using a mobile cell culture, it is shown that the produced nonwoven materials are not toxic and can be used for medical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AF:

aerodynamic formation

EF:

electric formation

PVDF:

polyvinyldenefluoride

TFE:

tetrafluoroethylene

VDF/TFE:

copolymer of vinyldenefluoride and tetrafluoroethylene

VDF/TrFE:

copolymer of vinyldenfluoride and tetrafluoroethylene

GCh:

gas chromatography

References

  1. Rüfe, F., Eisenack, J., Klettner, A., Zeuner, R., Hillenkamp, J., Westphal, G., Roider, J., and Nölle, B., Multilayered gore-tex patch for temporary coverage of deep noninfectious corneal defects: Surgical procedure and clinical experience, Am. J. Ophthalmol., 2011, vol. 151, pp. 703–713.

    Article  Google Scholar 

  2. Soroka, V.V., Dyakov, V.E., and Suborova, T.N., First experience of application of vascular prostheses “Vitaflon” in aorta arc branches reconstruction operations, Angiol. Vasc. Surg., 1997, vol. 1, pp. 79–82.

    Google Scholar 

  3. Voegele-Kadletz, M. and Wolner, E., Bioartificial surfaces—blood surface interaction, Mater. Sci. Eng., 2011, vol. 31, pp. 1195–1200.

    Article  CAS  Google Scholar 

  4. Klinge, U., Junge, K., Schumpelick, V., Klosterhalfen, B., and Öttinger, A.P., PVDF as a new polymer for the construction of surgical meshes, Biomaterials, 2002, vol. 23, pp. 3487–3493.

    Article  CAS  Google Scholar 

  5. Mania, G., Feldman, M.D., Patel, D., and Agrawal, C.M., Coronary stents: A materials perspective, Biomaterials, 2007, vol. 28, pp. 1689–1710.

    Article  Google Scholar 

  6. Jin, G., Yao, Q., Zhang, S., and Zhanga, L., Surface modifying of microporous PTFE capillary for bilirubin removing from human plasma and its blood compatibility, Mater. Sci. Eng., 2008, vol. 28, pp. 1480–1488.

    Article  CAS  Google Scholar 

  7. Correa, F.J., Rogeroa, B.S.O., Coutoa, A.A., Costa Marques, R.F., Ribeiro, A.A., and Campos, J.S., Characterization of PVDF/HAP composites for medical applications, Mater. Res., 2007, vol. 10, pp. 247–251.

    Article  Google Scholar 

  8. Aronov, A.M., Bol’basov E.N., Guzeev, V.V., Dvornichenko, M.V., Tverdokhlebov, S.I., and Khlusov, I.A., Biological composites based on fluoropolymers with hydroxyapatite for intramedullary implants, Biomed. Eng., 2010, vol. 3, pp. 108–113.

    Article  Google Scholar 

  9. Campos, J.S.C., Ribeiro, A.A., and Cardoso, C.X., Preparation and characterization of PVDF/CaCO3 composites, Mater. Sci. Eng., 2007, vol. 136, pp. 123–128.

    Article  CAS  Google Scholar 

  10. Yousefpour, M., Afshar, A., Chen, J., and Zhang, X., Electrophoretic deposition of porous hydroxyapatite coatings using polytetrafluoroethylene particles as templates, Mater. Sci. Eng., 2007, vol. 27, pp. 1482–1486.

    Article  CAS  Google Scholar 

  11. Hicks, J.C., Jones, T.E., and Logan, J.C., Ferroelectric properties of poly (vinylidenefluoridetetrafluoroethylene), J. Appl. Phys., 1978, vol. 49, pp. 6092–6096.

    Article  CAS  Google Scholar 

  12. Watanabe, J., Imai, K., and Uematsu, I., On the Curie temperature of poly (vinylidenefluoride), Macromolecules, 1986, vol. 19, pp. 1491–1494.

    Article  Google Scholar 

  13. Valentini, F.R., Electrically charged polymeric substrates enhance nerve-fiber outgrowth in vitro, Biomaterials, 1992, vol. 13, pp. 183–190.

    Article  CAS  Google Scholar 

  14. Valentini, F.R., Vargo, T.G., Gardella, J.A., and Aebischer, P., Patterned neuronal attachment and outgrowth on surface modified, electrically charged fluoropolymer substrates, J. Biomater. Sci., Polym. Ed., 1994, vol. 5, pp. 13–16.

    Article  Google Scholar 

  15. Lee, Y.-S., Collins, G., and Arinzeh, T. L., Neurite extension of primary neurons on electrospun piezoelectric scaffolds, Acta Biomater., 2011, vol. 7, pp. 3877–3886.

    Article  CAS  Google Scholar 

  16. Weber, N., Lee, Y.-S., Shanmugasundaram, S., Jaffe, M., and Arinzeh, T.L., Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds, Acta Biomater., 2010, vol. 6, pp. 3550–3556.

    Article  CAS  Google Scholar 

  17. Filatov, Yu.N., Elektroformovanie voloknistykh materialov (EFV-protsess) (Electroformation of Fibrous Materials), Kirichenko, V.N., Ed., Moscow: Neft’ Gaz, 1997.

  18. Dzenis, Y., Spinning continuous fibers for nanotechnology, Science, 2004, vol. 304, pp. 1917–1919.

    Article  CAS  Google Scholar 

  19. Lannutti, J., Reneker, D., Ma, T., Tomasko, D., and Farson, D., Electrospinning for tissue engineering scaffolds, Mater., Sci. Eng., 2007, vol. 27, pp. 504–509.

    Article  CAS  Google Scholar 

  20. Agarwal, S., Wendorff, J.H., and Greiner, A., Use of electrospinning technique for biomedical applications, Polymer, 2008, vol. 49, pp. 5603–5621.

    Article  CAS  Google Scholar 

  21. Ramakrishna, S., Fujihara, K., Teo, W., Lim, T., and Ma, Z., An Introduction to Electrospinning and Nanofibers, Singapore: World Scientific, 2005.

    Book  Google Scholar 

  22. Medeiros, E.S., Glenn, G.M., Klamczynski, A.P., Orts, W.J., and Mattoso, L.H.C., Solution blow spinning: A new method to produce micro- and nanofibers from polymer solutions, J. Appl. Polym. Sci., 2009, vol. 113, pp. 2322–2330.

    Article  CAS  Google Scholar 

  23. Zhang, L.F., Kopperstad, P., West, M., Hedin, N., and Fong, H., Generation of polymer ultrafine fibers through solution (air-) blowing, J. Appl. Polym. Sci., 2009, vol. 114, pp. 3479–3486.

    Article  CAS  Google Scholar 

  24. Zhuang, X., Shi, L., Jia, K., Cheng, B., and Kang, W., Solution blown nanofibrous membrane for microfiltration, J. Membr. Sci., 2013, vol. 429, pp. 66–70.

    Article  CAS  Google Scholar 

  25. Zhuang, X., Yang, X., Shi, L., Cheng, B., Guan, K., and Kang, W., Solution blowing of submicron-scale cellulose fibers, Carbohydr. Res., 2012, vol. 90, pp. 982–987.

    Article  CAS  Google Scholar 

  26. Tutak, W., Sarkar, S., Lin-Gibson, S., Farooque, T.M., Wang, G.J.D., Kohn, J., Bolikal, D., and Simon, C.G., The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds, Biomaterials, 2013, vol. 34, pp. 2389–2398.

    Article  CAS  Google Scholar 

  27. Lando, J.B. and Doll, W.W., The polymorphism of poly (vinylidene fluoride). I. The effect of head-to-head structure, J. Macromol. Sci.: Part B: Phys., 1968, vol. 2, pp. 205–218.

    Article  CAS  Google Scholar 

  28. Panshin, Yu.A., Malkevich, S.G., and Dunaevskaya, Ts.S., Ftoroplasty (Fluorocarbon Polymers), Leningrad: Khimiya, 1978.

    Google Scholar 

  29. Tashiro, K. and Kobayashi, M., Structural phase transition in ferroelectric fluorine polymers: X-ray diffraction and infrared/Raman spectroscopic study, Ph. Transit., 1989, vol. 18, pp. 213–246.

    Article  CAS  Google Scholar 

  30. Eskov, A.P., Kayumov, R.I., and Sokolov, A.E., Dynamic, label free test for in vito cytotoxicity, Toxicol. Lett., 2012, vol. 211,Suppl., p. 148.

    Article  Google Scholar 

  31. Huayu Tian, Zhaohui Tang, Xiuli Zhuang, Xuesi Chen, and Xiabin Jing, Biodegradable synthetic polymers: Preparation, fictionalization and biomedical application, Progress Polymer Sci., 2012, vol. 37, pp. 237–280.

    Article  Google Scholar 

  32. Sencadas, V., Lanceros-Merndez, S., and Mano, F., Thermal characterization of a vinylidene fluoride-trifluorethylene (75-25 % mol) copolymer film, J. NonCryst. Solids, 2006, vol. 352, pp. 5376–5381.

    Article  CAS  Google Scholar 

  33. Lovinger, A.J., Johnson, G.E., Bair, H.E., and Anderson, E.W., Structural, dielectric, and thermal investigation of the Curie transition in a tetrafluoroethylene copolymer of vinylidene fluoride, J. Appl. Phys, 1984, vol. 56, pp. 2412–2418.

    Article  CAS  Google Scholar 

  34. Murata, Y. and Koizumi, N., Ferroelectric behavior in vinylidene fluoride-tetrafluoroethylene copolymers, Ferroelectricity, 1989, vol. 92, pp. 47–54.

    Article  CAS  Google Scholar 

  35. Lovinger, A.J., Ferroelectric transition in a copolymer of vinylidene fluoride and tetrafluoroethylene, Macromolecules, 1983, vol. 16, pp. 1529–1534.

    Article  CAS  Google Scholar 

  36. Kochervinskii, V.V., Specifics of structural transformations in poly(vinylidene fluoride)-based ferroelectric polymers in high electric fields, Polymer Sci., Ser. C, 2008, vol. 50, pp. 91–121.

    Article  Google Scholar 

  37. Kochervinskii, V.V., Kozlova, N.V., Khnykov, A.Y., Shcherbina, M.A., Sulyanov, S.N., and Dembo, K.A., Features of structure formation and electrophysical properties of poly (vinylidene fluoride) crystalline ferroelectric polymers, J. Appl. Polym. Sci., 2010, vol. 116, pp. 695–707.

    CAS  Google Scholar 

  38. Lovinger, A.J., Davis, D.D., Cais, R.E., and Kometani, J.M., On the Curie temperature of poly (vinylidenefluoride), Macromolecules, 1986, vol. 19, pp. 1491–1494.

    Article  CAS  Google Scholar 

  39. Tashiro, K., Kaito, H., and Kobayashi, M., Structural changes in ferroelectric phase transitions of vinylidene fluoride-tetrafluoroethylene copolymers, Polymer, 1992, vol. 33, pp. 2929–2933.

    Article  CAS  Google Scholar 

  40. Tashiro, K., Abe, Y., and Kobayashi, M., Computer simulation of structure and ferroelectric phase transition of vinylidene fluoride copolymers (1) vdf content dependence of the crystal structure, Ferroelectricity, 1995, vol. 171, pp. 281–297.

    Article  CAS  Google Scholar 

  41. Tashiro, K., Kaito, H., and Kobayashi, M., Structural changes in ferroelectric phase transitions of vinylidenefluoride-tetrafluoroethylene copolymers: 1. Vinylidene fluoride content dependence of the transition behavior, Polymer, 1992, vol. 33, pp. 2915–2928.

    Article  CAS  Google Scholar 

  42. Kochervinskii, V.V., The structure and properties of block poly(vinylidene fluoride) and systems based on it, Russ. Chem. Rev., 1996, vol. 65, pp. 865–913.

    Article  Google Scholar 

  43. Green, J. and Rabolt, J.F., Identification of a Curie transition in vinylidene fluoride/tetrafluoroethylene random copolymers by spectroscopic methods, Macromolecules, 1987, vol. 20, pp. 457–459.

    Article  Google Scholar 

  44. Tashiro, K. and Kobayashi, M., Vibrational spectroscopic study of the ferroelectric phase transition in vinylidene fluoride-trifluoroethylene copolymers: 1. Temperature dependence of the Raman spectra, Polymer, 1988, vol. 29, pp. 426–436.

    Article  CAS  Google Scholar 

  45. Tashiro, K., Kaito, H., and Kobayashi, M., Structural changes in ferroelectric phase transitions of vinylidene fluoride-tetrafluoroethylene copolymers: 2. Normalmodes analysis of the infra red and Raman spectra at room temperature, Polymer, 1992, vol. 33, pp. 2929–2933.

    Article  CAS  Google Scholar 

  46. Gosudarstvennaya farmakopeya Rossiiskoi Federatsii OFS 42-0057-07 “Ostatochnye organicheskie rastvoriteli” (State Pharmacopeia of Russian Federation OFS 42-0057-07 “Residual Organic Solvents”).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Bol’basov.

Additional information

Original Russian Text © E.N. Bol’basov, S.I. Tverdokhlebov, V.M. Busnik, A.V. Pustovoitov, 2014, published in Materialovedenie, 2014, No. 6, pp. 38–47.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bol’basov, E.N., Tverdokhlebov, S.I., Busnik, V.M. et al. Structure and properties of nonwoven materials based on copolymer of tetrafluoroethylene and vinyldenefluoride produced by aerodynamic formation. Inorg. Mater. Appl. Res. 6, 22–31 (2015). https://doi.org/10.1134/S2075113315010037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113315010037

Keywords

Navigation