Skip to main content
Log in

Effects of Different Zn/Mg Ratio and Ti Content on Hot Extruded 7xxx series Aluminum Alloy

  • NEW SUBSTANCES, MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The effects of alloy composition (Zn/Mg ratio and Ti content) on the microstructure and properties of Al–3.5Mg–xZn–1.22Cu–0.2Zr–yTi aluminum alloy were studied in this paper. The results show that after solution treatment at 450°C × 2h + 460°C × 2h + 470°C × 2h + 475°C × 2h, when the Zn/Mg ratio of the alloy increases from 3.55 to 3.85, the grain size of the alloy increases, the insoluble phase increases, the dislocation decreases, and the intergranular corrosion resistance decreases gradually. Under the condition of T6 aging, the hardness and electrical conductivity of the alloy decreased at first and then increased, and the compressive strength at room temperature also decreased at first and then increased, and the hardness and compressive strength reached the maximum when the Zn/Mg ratio was 3.85. When Zn/Mg is constant, with the increase of Ti content (0–0.88 wt %), the recrystallization degree of the alloy decreases, the insoluble phase increases, the dislocation density and strengthening value gradually decrease, the inter-granular corrosion resistance decreases gradually, and the hardness, electrical conductivity and compressive strength of the alloy decrease gradually under T6 aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Cao Jingzhu and Wang Zhutang, Light Alloy Process. Technol., 2013, vol. 41, p. 1.

    Google Scholar 

  2. Xiong Baiqing, Report on the Development of China’s New Materials Industry, 2009, China Society for Materials Research, 2010, vols. 43–51.

  3. Dursun, T. and Soutis, C., Mater. Des., 2014, vol. 56, p. 862.

    Article  CAS  Google Scholar 

  4. Ji Hao, Aviation Sci. Technol., 2015, vol. 26, p. 75.

    Google Scholar 

  5. Jiang Dafa, Zhou Li, Chen Jingjing, et al., Electric Locomotive and Urban Rail Vehicle, 2019, vol. 42, p. 31-car.

    CAS  Google Scholar 

  6. Wang, Y., Xiong, B.Q., Li, Z.H., et al., Rare Met., 2019, vol. 38, no. 4, p. 343.

    Article  CAS  Google Scholar 

  7. Naeem Haider, T., Mohammed Kahtan, S., Ahmad Khairel, R., et al., Adv. Mater. Sci. Eng., 2014, vol. 2014, p. 686474.

    Google Scholar 

  8. Fang, H.C., Chen, K.H., Chen, X., et al., Mater. Sci. Eng., A, 2011, vol. 528, p. 7606.

    Article  CAS  Google Scholar 

  9. Wang, X.D., Nie, Z.R., Lin, S.P., et al., Mater. Sci. Forum, 2009, vols. 610–613, p. 663.

    Article  Google Scholar 

  10. Li, P.Z., Li, Z., and Long, Z., Adv. Mater. Res., 2014, vol. 2954, p. 316.

    Article  Google Scholar 

  11. Jiang, F.L., Zhang, H., Ji, X.K., et al., Mater. Sci. Eng., A, 2014, vol. 595, p. 10.

    Article  CAS  Google Scholar 

  12. Zuo, X.R. and Ni, P.X., Adv. Sci. Lett., 2011, vol. 4, no. 3, p. 1182.

    Article  CAS  Google Scholar 

  13. Wang, J.H., Yi, D.Q., Wang B, et al., Trans. Nonferrous Met. Soc. China, 2003, vol. 13, no. 3, p. 590.

    CAS  Google Scholar 

  14. Pourkia, N., Emamy, M., Farhangi, H., et al., Mater. Sci. Eng., A, 2010, vol. 527, no. 20, p. 5318.

    Article  Google Scholar 

  15. Youssef, K.M., Scattergood, R.O., Murty, K.L., et al., Scr. Mater., 2006, vol. 54, no. 2, p. 251.

    Article  CAS  Google Scholar 

  16. Zhao, Y.H., Liao, X.Z., Jin, Z., et al., Acta Mater., 2004, vol. 52, no. 15, p. 4589.

    Article  CAS  Google Scholar 

  17. Luo, P., Mcdonald, D.T., Xu, W., et al., Scr. Mater., 2012, vol. 66, no. 10, p. 785.

    Article  CAS  Google Scholar 

  18. Cabibbo, M., Mater. Sci. Eng., A, 2013, vol. 560, p. 413.

    Article  CAS  Google Scholar 

  19. Luo Shoujing, Chen Bingguang, Qi Pixiang, et al., Liquid Die Forging and Squeeze Casting Technology, Beijing: Chemical Industry Press, 2007.

    Google Scholar 

Download references

Funding

The authors would like to acknowledge the financial support of Industrial Science and technology support program of Jiangsu province (grant no. BE2008118), and the Key Projects of the 13th Five-Year Plan Equipment Pre-research Foundation of the Ministry of Equipment Development of the Central Military Commission of China (no. 6140922010201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Xu.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Yin, S. & Xu, X. Effects of Different Zn/Mg Ratio and Ti Content on Hot Extruded 7xxx series Aluminum Alloy. Prot Met Phys Chem Surf 59, 1239–1249 (2023). https://doi.org/10.1134/S2070205123701216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205123701216

Keywords:

Navigation