Skip to main content
Log in

The Role of Primary Acts of Ion Reduction and Oxygen Effects Using Various Methods of Gold Nanoparticle Formation, Including Self-Assembly

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

This work presents the results of a study of the physical-chemical properties of gold nanoparticles (NP) prepared in reverse micellar solutions (RMS) using various ion reduction methods, including self-assembly (SA). The spectra of the electron plasmon resonance of the Au NP in the visible region (λmax ~ 530 nm) and in the UV region of the spectrum (λmax ~ 200–220 nm) were recorded by UV–Vis spectrophotometry. In the present work, the kinetics of the primary stages of the formation of Au NPs in RMS using various synthesis methods, including SA, has been studied. Based on the results we obtained, an explanation has been provided for the effect of oxygen (aerobic conditions) on the primary stages of the formation of Au NPs using chemical (Chem) synthesis in the presence of the flavonoid quercetin, and radiation-chemical (RadChem) one based on interaction with intermediate particles of water radiolysis. The formation of Au NPs with optical absorption bands in the UV region and the visible region of the spectrum has been corroborated by the results of electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Komarov, P.V., Zherenkova, L.V., Khalatur, P.G., and Khokhlov, A.R., Ross. Nanotekhnol., 2007, vol. 2, nos. 7–8, p. 92.

    Google Scholar 

  2. Odintsov, A.A., Sergeev, M.O., Revina, A.A., and Boeva, O.A., Usp. Khim. Khim. Tekhnol., 2013, vol. 27, no. 6, p. 75.

    Google Scholar 

  3. Antonov, A.Yu., Boeva, O.A., Revina, A.A., Nurtdinolva, K.F., et al., Perspekt. Mater., 2011, no. 10, special issue, p. 268.

  4. Chernyshova, K.F. and Revina, A.A., Vserossiiskii simpozium s mezhdunarodnym uchastiem “Aktual’nye fiziko-khimicheskie problemy adsorbtsii i sinteza nanoporistykh materialov”, Sbornik trudov (Proc. All-Russian Symposium with International Participation “Topical Physical and Chemical Problems on Adsorption and Synthesis of Nano-Porous Materials”), Moscow, 2022, p. 102.

  5. Patrusheva, T.N., Shelovanova, G.N., Snezhko, N.Yu., Polyushkevich, A.V., and Khol’kin, A.I., Al’tern. Energ. Ekol., 2011, no. 3, p. 35.

  6. Revina, A.A., RF Patent 2322327, 2008.

  7. Revina, A.A., RF Patent 2312741, 2007.

  8. Revina, A.A., Phys. Wave Phenom., 2020, vol. 28, no. 2, p. 176

    Article  Google Scholar 

  9. Pileni, M., J. Phys. Chem., 1993, vol. 97, p. 6961.

    Article  CAS  Google Scholar 

  10. Ranabhat, K., Chernyshova, K.F., Revina, A.A., Lapshinsky, V., and Patrikeev, L.N., Nanomaterials, 2020, vol. 10, p. 1.

    Google Scholar 

  11. Alekhova, T.A., Novozhilova, T.Yu., Zagustina, N.A., Revina, A.A., and Busev, S.A., Razrabotka sredstv kupirovaniya mikrobiologicheskogo porazheniya konstruktsionnykh materialov v kosmicheskikh apparatakh v ramkakh kosmicheskogo eksperimenta “Biopolimer”. Tezisy (Development of Means for Relieving Microbiological Damage of Structural Materials in Spacecrafts within the Framework of the Space Experiment “Biopolymer”. Proceedings), Pushchino, 2018.

  12. Nikonenko, B.V., Maiorov, K.B., Revina, A.A., Zakharov, A.V., and Ergeshov, A.E., Vestn. TsNIIT, 2019, no. 4, p. 46.

  13. Tanasyuk, D.A., Revina, A.A., and Ermakov, V.I., Usp. Khim. Khim. Tekhnol., 2014, vol. 28, no. 6, p. 107.

    Google Scholar 

  14. Chernysheva, K.F. and Revina, A.A., Russ. J. Phys. Chem. B, 2019, vol. 13, no. 3, p. 452. https://doi.org/10.1134/S1990793119030023

    Article  CAS  Google Scholar 

  15. Revina, A.A., Chernyshova, K.F., Tabachkova, N.Yu., and Parkhomenko, Yu.N., Russ. Chem. Bull., 2019, vol. 68, no. 6, p. 1164. https://doi.org/10.1007/s11172-019-2534-z

    Article  CAS  Google Scholar 

  16. Chernyshova, K.F. and Revina, A.A., Naukoemkie Tekhnol., 2017, vol. 18, no. 1, p. 45.

    Google Scholar 

  17. Fu-Ken Liu, Yu-Cheng Chang, Fu-Hsiang Ko, Tieh-Chi Chu, and Bau-Tong Dai, Microelectron. Eng., 2003, vols. 67–68, p. 702.

    Article  Google Scholar 

  18. Kimling, J., Maier, M., Okenve, B., Kotaidis, V., Ballot, H., and Plech, A., J. Phys. Chem. B, 2006, vol. 110, p. 15700.

    Article  CAS  Google Scholar 

  19. Jun Liu, Changhao Liang, Shuyuan Zhang, and Guosheng Shao, Sci. Rep., 2013, vol. 3, p. 1741. https://doi.org/10.1038/srep01741

    Article  CAS  Google Scholar 

  20. Ermakov, V.I. and Revina, A.A., Obratnomitsellyarnye sistemy: Elektromagnitnye svoistva i struktura (Reverse-Micellar Systems: Electromagnetic Properties and Structure), Nizhny Novgorod: Nizhny Novgorod Institute of Management, Russian Presidential Academy of National Economy and Public Administration, 2017.

  21. Revina, A.A., Suvorova, O.V., Pavlov, Yu.S., and Tytik, D.L., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, no. 5, p. 888. https://doi.org/10.1134/S2070205119040166

    Article  CAS  Google Scholar 

  22. Revina, A.A., Suvorova, O.V., Smirnov, Yu.V., and Pavlov, Yu.S., Prot. Met. Phys. Chem. Surf., 2022, vol. 58, no. 3, p. 525. https://doi.org/10.1134/S2070205122030170

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. F. Chernyshova or A. A. Revina.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by D. Marinin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyshova, K.F., Revina, A.A. The Role of Primary Acts of Ion Reduction and Oxygen Effects Using Various Methods of Gold Nanoparticle Formation, Including Self-Assembly. Prot Met Phys Chem Surf 59, 904–910 (2023). https://doi.org/10.1134/S2070205123701083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205123701083

Keywords:

Navigation