Skip to main content
Log in

The Influence of Pulse Current Parameters on Microstructure, Morphology, and Corrosion Behaviour of the Electrodeposited Ni–Fe–TiO2 Composite Coating

  • NEW SUBSTANCES, MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Due to usage of different materials in corrosive environment, the importance of corrosion resistance composite coating is interestingly increasing. In the present study, the effect of pulse current parameters, such as pulse frequency and duty cycle, on microstructure and corrosion behaviour of Ni–Fe–TiO2 composite, coating on a bath containing optimized consternation of TiO2 nanoparticles, was studied. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), potansiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluation of microstructure, phase identification and corrosion behaviour, respectively. The results showed that, the corrosion resistance of pulse current coated samples improved in comparison with direct current (DC) sample. In addition, the corrosion resistance of the layer was increased in higher frequencies and lower duty cycles. Furthermore, the results of SEM corresponded that the micro cracks with increasing the frequency were decreased. Moreover, the EDS data proved that, with decreasing the duty cycle the number of embedded particles were raised from 1 to 7% weight percent, also with increasing the frequency this rate was increased from 2 to 6% weight percent. The X-ray analyse was carried out and it showed that crystallite diffraction planes were the same in various pulse frequency and duty cycles and a specific peak was detected which was considered as Ni3Fe, although the crystallite size were declined in higher frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Bari, G., in Modern Electroplating, Fifth Edition, Wiley, 2011, p. 79. https://doi.org/10.1002/9780470602638.ch3.

  2. Torabinejad, V., Aliofkhazraei, M., Assareh, S., Allahyarzadeh, M.H., and Rouhaghdam, A.S., J. Alloys Compd., 2017, vol. 691, p. 841. https://doi.org/10.1016/j.jallcom.2016.08.329

    Article  CAS  Google Scholar 

  3. Abdel-Karim, R., Reda, Y., Muhammed, M., El-Raghy, S., Shoeib, M., and Ahmed, H., J. Nanomater., 2011, vol. 2011, p. 519274. https://doi.org/10.1155/2011/519274

    Article  CAS  Google Scholar 

  4. McCrea, J.L., Palumbo, G., Hibbard, G., and Erb, U., Rev. Adv. Mater. Sci., 2003, vol. 5, p. 252.

    CAS  Google Scholar 

  5. Ranjith, B., and Paruthimal Kalaignan, G., Appl. Surf. Sci., 2010, vol. 257, no. 1, p. 42. https://doi.org/10.1016/j.apsusc.2010.06.029

    Article  CAS  Google Scholar 

  6. Benea, L., Bonora, P.L., Borello, A., and Martelli, S., Wear, 2001, vol. 249, no. 10, p. 995. https://doi.org/10.1016/S0043(01)00844

    Article  CAS  Google Scholar 

  7. Podlaha, E.J., Nano Lett., 2001, vol. 1, no. 8, p. 413. https://doi.org/10.1021/nl015508u

    Article  CAS  Google Scholar 

  8. Lajevardi, S.A. and Shahrabi, T., Appl. Surf. Sci., 2010, vol. 256, no. 22, p. 6775. https://doi.org/10.1016/j.apsusc.2010.04.088

    Article  CAS  Google Scholar 

  9. Li, Q., Yang, X., Zhang, L., Wang, J., and Chen, B., J. Alloys Compd., 2009, vol. 482, p. 339. https://doi.org/10.1016/j.jallcom.2009.04.014

    Article  CAS  Google Scholar 

  10. Aal, A.A. and Hassan, H.B., J. Alloys Compd., 2009, vol. 477, no. 1, p. 652. https://doi.org/10.1016/j.jallcom.2008.10.116

    Article  CAS  Google Scholar 

  11. Lampke, T., Wielage, B., Dietrich, D., and Leopold, A., Appl. Surf. Sci., 2006, vol. 253, p. 2399. https://doi.org/10.1016/j.apsusc.2006.04.060

    Article  CAS  Google Scholar 

  12. Thiemig, D. and Bund, A., Surf. Coat. Technol., 2008, vol. 202, p. 2976. https://doi.org/10.1016/j.surfcoat.2007.10.035

    Article  CAS  Google Scholar 

  13. Lampke, T., Leopold, A., Dietrich, D., Alisch, G., and Wielage B., Surf. Coat. Technol., 2006, vol. 201, no. 6, p. 3510. https://doi.org/10.1016/j.surfcoat.2006.08.073

    Article  CAS  Google Scholar 

  14. Protsenko, V.S., Vasil’eva, E.A., Tsurkan, A.V., Kityk, A.A., Korniy, S.A., and Danilov, F.I., J. Environ. Chem. Eng., 2017, vol. 5, no. 1, p. 136. https://doi.org/10.1016/j.jece.2016.11.034

    Article  CAS  Google Scholar 

  15. Anwar, S., Khan, F., and Zhang, Y., Process Saf. Environ. Prot., 2020, vol. 141, p. 366. https://doi.org/10.1016/j.psep.2020.05.048

    Article  CAS  Google Scholar 

  16. Yousefi, E., Sharafi, S., and Irannejad, A., J. Alloys Compd., 2018, vol. 753, p. 308. https://doi.org/10.1016/j.jallcom.2018.04.232

    Article  CAS  Google Scholar 

  17. Torabinejad, V., Rouhaghdam, A.S., Aliofkhazraei, M., and Allahyarzadeh, M.H., J. Alloys Compd., 2016, vol. 657, p. 526. https://doi.org/10.1016/j.jallcom.2015.10.154

    Article  CAS  Google Scholar 

  18. Thiemig, D., Lange, R., and Bund, A., Electrochim. Acta, 2007, vol. 52, p. 7362. https://doi.org/10.1016/j.electacta.2007.06.009

    Article  CAS  Google Scholar 

  19. Adelkhani, H. and Arshadi, M.R., J. Alloys Compd., 2008, vol. 476, p. 234. https://doi.org/10.1016/j.jallcom.2008.09.108

    Article  CAS  Google Scholar 

  20. Praveen, B. and Venkatesha, T., Appl. Surf. Sci., 2008, vol. 254, no. 8, p. 2418. https://doi.org/10.1016/j.apsusc.2007.09.047

    Article  CAS  Google Scholar 

  21. Goldasteh, H. and Rastegari, S., Surf. Coat. Technol., 2014, vol. 259, p. 393. https://doi.org/10.1016/j.surfcoat.2014.10.064

    Article  CAS  Google Scholar 

  22. Kumar, K.A., Kalaignan, G.P., and Muralidharan, V.S., Ceram. Int., 2013, vol. 39, no. 3, p. 2827. https://doi.org/10.1016/j.ceramint.2012.09.054

    Article  CAS  Google Scholar 

  23. Bishnoi, A., Kumar, S., and Joshi, N., in Microscopy Methods in Nanomaterials Characterization, Thomas, S., Thomas, R., Zachariah, A.K., and Mishra, R.K., Eds., Elsevier, 2017, p. 313. https://doi.org/10.1016/B978-0-323-46141-2.00009-2

  24. Su, C.-W., Wang, E.-L., Zhang, Y.-B., and He, F.-J., J. Alloys Compd., 2009, vol. 474, p. 190. https://doi.org/10.1016/j.jallcom.2008.06.050

    Article  CAS  Google Scholar 

  25. Sajjadnejad, M., Ghorbani, M., and Afshar, A., Ceram. Int., 2015, vol. 41, p. 217. https://doi.org/10.1016/j.ceramint.2014.08.061

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Heidarinassab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidarinassab, S., Afshar, M.R. & Tavandashti, N.P. The Influence of Pulse Current Parameters on Microstructure, Morphology, and Corrosion Behaviour of the Electrodeposited Ni–Fe–TiO2 Composite Coating. Prot Met Phys Chem Surf 58, 1044–1053 (2022). https://doi.org/10.1134/S2070205122050082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205122050082

Keywords:

Navigation