Skip to main content
Log in

Magnetic Properties of Fe + Ni-Containing TiO2-Layer/Ti Composites

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Oxide layers on titanium have been formed via the method of plasma electrolytic oxidation (PEO) in electrolyte–suspensions containing colloidal particles of iron and nickel hydroxides with a ratio of Fe3+/Ni2+ = 3 : 1 for 5–15 min. The average concentrations of iron, nickel, and titanium in the composition of the coatings were 6.1, 2.2, and 3.5 at %, respectively. For all the composites, the values of coercive force Hс at 300 K did not exceed 59 Oe, which can be attributed to soft magnetic materials. At 2 K, an increase of the magnetization values and a significant increase of Hc up to 496–679 Oe have been observed for all the samples. It has been hypothesized that the contribution to the magnetic behavior of the samples at room temperature is made by the bulk of coatings, whereas at helium temperature it was the contribution of microsized formations with an increased content of iron and nickel found in the pores. Increasing the duration of the PEO process up to 15 min leads to a decrease of Hс values by almost 100 Oe at 2 K, which can result from a decrease of the proportion of iron in the composition of crystallites and the appearance of spherical particles with an increased concentration of phosphorus, titanium, and oxygen in the pores. It has been established that, after long-term storage of the samples in air, the coercive force measured at 2 K decreased by almost twice, which could have been the result of the oxidation of metallic Fe+Ni-containing particles localized in open pores on the coating surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Rudnev, V.S., Prot. Met., 2008, vol. 44, no. 3, p. 263. https://doi.org/10.1134/S0033173208030089

    Article  CAS  Google Scholar 

  2. Curran, J.A., Research into Plasma Electrolytic Oxidation Coating Technologies Aims to Broaden its Industrial Potential. http://abrasiveshub.com/2014/09/abrasives-articles-45/.

  3. Kaseem, M., Fatimah, S., Nashrah, N., and Ko, Y.G., Prog. Mater. Sci., 2020, vol. 117, no. 29, p. 100735. https://doi.org/10.1016/j.pmatsci.2020.100735

    Article  CAS  Google Scholar 

  4. Patcas, F. and Krysmann, W., Appl. Catal., A, 2007, vol. 316, no. 2, p. 240. https://doi.org/10.1016/j.apcata.2006.09.028

  5. Stojadinovic, S., Radic, N., Grbic, B., Maletic, S., Stefanov, P., Pacevski, A., and Vasilic, R., Appl. Surf. Sci., 2016, vol. 370, p. 218. https://doi.org/10.1016/j.apsusc.2016.02.131

    Article  CAS  Google Scholar 

  6. Terleeva, O.P., Sharkeev, Yu.P., Slonova, A.I., Mironov, I.V., Legostaeva, E.V., Khlusov, I.A., Matykina, E., Skeldon, P., and Thompson, G.E., Surf. Coat. Technol., 2010, vol. 205, no. 6, p. 1723. https://doi.org/10.1016/j.surfcoat.2010.10.019

    Article  CAS  Google Scholar 

  7. Song, W.H., Ryu, H.S., and Hong, S.H., J. Biomed. Mater. Res., Part A, 2009, vol. 88, no. 1, p. 246. https://doi.org/10.1002/jbm.a.31877

    Article  CAS  Google Scholar 

  8. Vladimirov, B.V., Krit, B.L., Lyudin, V.B., Morozova, N.V., Rossiiskaya, A.D., Suminov, I.V., and Epel’feld, A.V., Surf. Eng. Appl. Electrochem., 2014, vol. 50, no. 3, p. 195. https://doi.org/10.3103/S1068375514030090

    Article  Google Scholar 

  9. Gnedenkov, S.V., Sinebryukhov, S.L., Mashtalyar, D.V., Buznik, V.M., Emel’yanenko, A.M., and Boinovich, L.B., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, no. 1, p. 93. https://doi.org/10.1134/S2070205111010047

    Article  CAS  Google Scholar 

  10. Jin, F.Y., Tong, H.H., Li, J., Shen, L.R., and Chu, P.K., Surf. Coat. Technol., 2006, vol. 201, nos. 1–2, p. 292. https://doi.org/10.1016/j.surfcoat.2005.11.116

    Article  CAS  Google Scholar 

  11. Jagminas, A., Ragalevicius, R., Mazeika, K., Reklaitis, J., Jasulaitiene, V., Selskis, A., and Baltrunas, D., J. Solid State Electrochem., 2010, vol. 14, no. 2, p. 271. https://doi.org/10.1007/s10008-009-0820-7

    Article  CAS  Google Scholar 

  12. Gnedenkov, S.V., Sinebryukhov, S.L., Tkachenko, I.A., Mashtalyar, D.M., Ustinov, A.Yu., Samokhin, A.V., and Tsvetkov, Yu.V., Inorg. Mater.: Appl. Res., 2012, vol. 33 no. 7, p. 151. https://doi.org/10.1134/S2075113312020062

    Article  Google Scholar 

  13. Rogov, A.B., Terleeva, O.P., Mironov, I.V., and Slonova, A.I., Appl. Surf. Sci., 2012, vol. 258, no. 7, p. 2761. https://doi.org/10.1016/j.apsusc.2011.10.128

    Article  CAS  Google Scholar 

  14. Baranova, T.A., Chubenko, A.K., Ryabikov, A.E., Mamaev, A.I., Mamaeva, V.A., and Beletskaya, E.Y., IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 286, p. 012037. https://doi.org/10.1088/1757-899X/286/1/012037

  15. Tirkey, M.M. and Gupta, N., Int. J. Microwave Wireless Technol., 2019, vol. 11, no. 2, p. 151. https://doi.org/10.1017/S1759078718001472

    Article  Google Scholar 

  16. Green, M. and Chen, X.B., J. Materiomics, 2019, vol. 5, no. 4, p. 503. https://doi.org/10.1016/j.jmat.2019.07.003

    Article  Google Scholar 

  17. Levy, M., IEEE J. Sel. Top. Quantum Electron., 2002, vol. 8, no. 6, p. 1300. https://doi.org/10.1109/JSTQE.2002.806691

    Article  CAS  Google Scholar 

  18. Nipan, G.D., Stognij, A.I., and Ketsko, V.A., Russ. Chem. Rev., 2012, vol. 81, no. 5, p. 458. https://doi.org/10.1070/RC2012v081n05ABEH004251

    Article  CAS  Google Scholar 

  19. Hou, X.W., Liu, S.B., and Chang, J., Appl. Mech. Mater., 2012, vols. 135–136, p. 484. https://doi.org/10.4028/www.scientific.net/AMM.135-136.484

    Article  Google Scholar 

  20. Rudnev, V.S., Adigamova, M.V., Lukiyanchuk, I.V., Ustinov, A.Yu., Tkachenko, I.A., Kharitonskii, P.V., Frolov, A.M., and Morozova, V.P., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 5, p. 543. https://doi.org/10.1134/S2070205112050097

    Article  CAS  Google Scholar 

  21. Rudnev, V.S., Morozova, V.P., Lukiyanchuk, I.V., Tkachenko, I.A., Adigamova, M.V., Ustinov, A.Yu., Kharitonskii, P.V., Frolov, A.M., and Boev, S.A., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 3, p. 309. https://doi.org/10.1134/S2070205113030143

    Article  CAS  Google Scholar 

  22. Rudnev, V.S., Lukiyanchuk, I.V., Adigamova, M.V., Morozova, V.P., and Tkachenko, I.A., Surf. Coat. Technol., 2015, vol. 269, p. 23. https://doi.org/10.1016/j.surfcoat.2015.01.073

    Article  CAS  Google Scholar 

  23. Rudnev, V.S., Kharitonskii, P.V., Kosterov, A.A., Sergienko, E.S., Shevchenko, E.V., Lukiyanchuk, I.V., Adigamova, M.V., Morozova, V.P., and Tkachenko, I.A., J. Alloys Compd., 2020, vol. 816, p. 152579. https://doi.org/10.1016/j.jallcom.2019.152579

    Article  CAS  Google Scholar 

  24. Kharitonskii, P., Rudnev, V., Sergienko, E., Gareev, K., Tkachenko, I., Morozova, V., Lukiyanchuk, I., Adigamova, M., Frolov, A., and Ustinov, A., J. Supercond. Novel Magn., 2018, vol. 31, no. 6, p. 1933. https://doi.org/10.1007/s10948-017-4423-8

    Article  CAS  Google Scholar 

  25. Rudnev, V.S., Adigamova, M.V., Lukiyanchuk, I.V., Tkachenko, I.A., and Morozova, V.P., Surf. Coat. Technol., 2020, vol. 381, p. 125180. https://doi.org/10.1016/j.surfcoat.2019.125180

    Article  CAS  Google Scholar 

  26. Adigamova, M.V., Rudnev, V.S., and Lukiyanchuk, I.V., Sbornik statei po materialam 4-oi mezhdunarodnoi molodezhnoi nauchnoi shkoly-seminara “Nanostrukturirovannye oksidnye plenki i pokrytiya” (Proc. 4th Int. Youth Scientific School-Seminar “Nanostructured Oxide Films and Coatings”), Petrozavodsk, 2017, p. 90.

  27. Handbook on Physical Properties, Iida, S., Ohno, K., Kamimae, K., Kumagai, H., and Sawada, S., Eds., Asakura-Shoten, 1994, p. 124.

    Google Scholar 

  28. Rudnev, V.S., Yarovaya, T.P., Kon’shin, V.V., and Gordienko, P.S., Prot. Met., 2003, vol. 39, no. 2, p. 160.

    Article  CAS  Google Scholar 

  29. Snezhko, L.A., Kalinichenko, O.A., Misnyankin, D.A., and Erokhin, A.L., Mater. Sci., 2016, vol. 52, no. 3, p. 421. https://doi.org/10.1007/s11003-016-9974-5

    Article  CAS  Google Scholar 

  30. Pavic, L., Graca, M.P.F., Skoko, Z., Mogus-Milankovic, A., and Valente, M.A., J. Am. Ceram. Soc., 2014, vol. 97, no. 8, p. 2517. https://doi.org/10.1111/jace.12951

    Article  CAS  Google Scholar 

  31. Essehli, R., El Bali, B., Benmokhtar, S., Bouziane, K., Manoun, B., Abdalslam, M.A., and Ehrenberg, H., J. Alloys Compd., 2011, vol. 509, no. 4, p. 1163. https://doi.org/10.1016/j.jallcom.2010.08.159

    Article  CAS  Google Scholar 

  32. Khramov, A.N., Goncharov, G.I., Komissarova, R.A., et al., Paleomagnitologiya (Paleo-Magnetology), Khramov, A.N., Ed., Leningrad: Nedra, 1982.

    Google Scholar 

Download references

Funding

The synthesis of composites and the study of their phase, elemental composition, and magnetic characteristics was carried out in the framework of a State Order to the Institute of Chemistry of the Far East Branch of the Russian Academy of Sciences, project no. FWFN(0205)-2022-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Adigamova.

Additional information

Translated by D. Marinin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adigamova, M.V., Lukiyanchuk, I.V., Tkachenko, I.A. et al. Magnetic Properties of Fe + Ni-Containing TiO2-Layer/Ti Composites. Prot Met Phys Chem Surf 58, 510–518 (2022). https://doi.org/10.1134/S2070205122030029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205122030029

Keywords:

Navigation