Skip to main content
Log in

Structural and Electrochemical Characterization of the Zirconia Coating on the Ti6Al4V Alloy in Physiological Solution for Orthopedic Applications

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

This work consisted of performing zirconia coating of Ti6Al4V substrates through a process of colloidal electrophoretic deposition via hydrolysis starting from a colloidal suspension of ZrClO2·8H2O as a precursor obtained through sol-gel. The zirconia (ZrO2) coatings were subjected to a thermal treatment at temperatures of 400, 450, 500, 550 and 650°C for 2 h to consolidate the samples, which were structurally characterized through MEB and DRX to analyze the thermal effect of the evolution of the structure of the coatings. Then, the corrosion resistance of the ZrO2/Ti6Al4V system was evaluated through the Tafel extrapolation method in Hartmann’s solution at 37°C, simulating the physiological conditions of the human body using an electrochemical cell ventilated in open circuit conditions. The results indicated that the Ti6Al4V alloy had good corrosion resistance, specifically in the coating treated at 400°C, since it had the best results, obtaining low volumes of corrosion current density (icorr), corrosion rate (Vcorr), mass loss and ion release rate (IRR).

• Zirconia nanostructured films were obtained by electrodeposition on Ti6Al4V substrates.

• Ti6Al4V corrosion resistance in Hartman solution was increased with zirconia coating.

• Crystalline phases of zirconia were obtained and characterized by XRD.

• The morphology of nanostructured zirconia coatings on Ti6Al4V alloy was characterized by MEB.

• Binding energy of the xerogel and zirconia coating were obtained by XPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Baqain, Z.H., Moqbel, W.Y., and Sawair, F.A., J. Oral Surg., 2012, vol. 50, no. 3, pp. 239–243.

    Article  Google Scholar 

  2. Assis, S.L., Wolynec, S., and Costa, I., Electrochim. Acta, 2006, vol. 51, p. 1815.

    Article  Google Scholar 

  3. Takemoto, S., Hattori, M., Yoshinari, M., Kawada, E., Asami, K., and Oda, Y., Dent. Mater., 2009, vol. 25, p. 467.

    Article  CAS  Google Scholar 

  4. Marino, C.E.B., Biaggio, S.R., Rocha, R.C., and Bocchi, N., Electrochim. Acta, 2006, vol. 51, p. 6580.

    Article  CAS  Google Scholar 

  5. Yang, W. and Huang, H.H., Thin Solid Films, 2010, vol. 518, p. 7545.

    Article  CAS  Google Scholar 

  6. Olate, S., Duque de Miranda Chaves Netto, H., and de Albergaria-Barbosa, J.R., Av. Periodontol. Implantol., 2010, vol. 22, no. 1, pp. 37–43.

    Google Scholar 

  7. Huang, H.L., Chang, Y.Y., Lai, M.C., Lin, C.R., Lai, C.H., and Shieh, T.M., Surf. Coat. Technol., 2010, vol. 205, p. 1636.

    Article  CAS  Google Scholar 

  8. Arismendi, J.A., Agudelo, L.P., Marín, J.E., Peláez, A., Echavarría, A., and Rojas, C.M., Rev. Fac. Odontol. Univ. Antioquia, 2006, vol. 17, p. 47.

  9. Mobarak, N.A., Al-Swayih, A.A., and Rashoud, F.A., Int. J. Electrochem. Sci., 2011, vol. 6, p. 2031.

    Google Scholar 

  10. Alves, V.A., Reis, R.Q., Santos, I.C.B., Souza, D.G., Goncalves, T.F., Pereira da Silva, M.A., Rossi, A., and da Silva, L.A., Corros. Sci., 2009, vol. 51, p. 2473.

    Article  CAS  Google Scholar 

  11. Samiee, F., Raeissi, K., and Golozar, M.A., Corros. Sci., 2011, vol. 53, p.1969.

    Article  CAS  Google Scholar 

  12. Dominguez-Crespo, M.A., Garcia-Murillo, A., Torres, A.M., Yañez, C., and de Carrillo, F.J., J. Alloys Compd., 2009, vol. 483, p. 437.

    Article  Google Scholar 

  13. Hisbergues, M., Vendeville, S., and Vendeville, P., J. Biomed. Mater. Res., Part B, 2008, vol. 88, p. 519.

    Google Scholar 

  14. Espitia, I., Orozco-Hernández, H., Torres, R., Contreras, M.E., Bartolo, P., and Martinez, L., Mater. Lett., 2003, vol. 58, p. 191.

    Article  Google Scholar 

  15. Machado López, M.M., Faure, J., Espinosa-Medina, M.A., Espitia-Cabrera, M.I., and Contreras-García, M.E., J. Electrochem. Soc., 2015, vol. 162, p. D3090.

    Article  Google Scholar 

  16. Metikos, M. and Kwokal, A., Biomaterials, 2003, vol. 24, p. 3765.

    Article  Google Scholar 

  17. Stern, M. and Geary, A.L., J. Electrochem. Soc., 1957, vol. 104, p. 56.

    Article  CAS  Google Scholar 

  18. ASTM Int., 1999, p. 416.

  19. Wen-Chao, L., Wu, D., Ai-Dong, L., Qing, L., Yue-Feng, T., and Nai-Ben, M., Appl. Surf. Sci., 2002, vol. 191, p. 181.

    Article  Google Scholar 

  20. Piconi, C. and Maccauro, G., Biomaterials,1999, vol. 20, pp. 1–25.

    Article  CAS  Google Scholar 

  21. Cai, Z., Shafer, T., Watanabea, I., Nunn, M.E., and Okabe, T., Biomaterials, 2003, vol. 24, p. 213.

    Article  CAS  Google Scholar 

  22. Demczuk, A., Swieczko-Zurek, B., and Ossowska, A., Adv. Mater. Sci., 2011, vol. 11, p. 35.

    CAS  Google Scholar 

  23. Setare, E., Raeissi, K., Golozar, M.A., and Fathi, M.H., Corros. Sci., 2009, vol. 51, p. 1802.

    Article  CAS  Google Scholar 

  24. Tiwari, S.K., Adhikary, J., Singh, T.B., and Singh, R., Thin Solid Films, 2009, vol. 517, p. 4502.

    Article  CAS  Google Scholar 

  25. Pang, X., Zhitomirsky, I., and Niewczas, M., Surf. Coat. Technol., 2005, vol. 195, p. 138.

    Article  CAS  Google Scholar 

  26. Manivasagam, G., Dhinasekaran, D., and Rajamanickam, A., Corros. Sci., 2010, vol. 2, p. 40.

    CAS  Google Scholar 

  27. Takemoto, S., Hattori, M., Yoshinari, M., Kawada, E., Asami, K., and Oda, Y., Dent. Mater., 2009, vol. 25, p. 467.

    Article  CAS  Google Scholar 

  28. Popa, M.V., Vasilescu, E., Drob, P., Vasilescu, C., and Drob, S.I., Quim. Nova, 2010, vol. 33, p. 1892.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors also wish to thank National laboratory SEDEAM for the support received to carry out the translation in English language and to the Research Institute in Metallurgy and Materials of the UMSNH for the support for the FESEM analysis.

Funding

The authors acknowledge the financial support received from the CONACYT project 291222, as well as the postdoctoral grant from the CONACYT awarded to M.M. Machado López.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. Machado López, F. Reyes Calderón, H. J. Vergara Hernández, J. C. Villalobos or M. E. Contreras García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado López, M.M., Calderón, F.R., Hernández, H.J. et al. Structural and Electrochemical Characterization of the Zirconia Coating on the Ti6Al4V Alloy in Physiological Solution for Orthopedic Applications. Prot Met Phys Chem Surf 57, 1251–1261 (2021). https://doi.org/10.1134/S2070205121060149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121060149

Keywords:

Navigation