Skip to main content
Log in

Studying the Diffusion-barrier Properties, Thermal Stability and Oxidation Resistance of TiAlSiCN, TiAlSiCN/AlOx, and TiAlSiCN/SiBCN Coatings

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract—

This paper studies the diffusion-barrier properties, resistance to thermal cycling, oxidation resistance, and thermal stability of TiAlSiCN single-layer coatings, as well as of TiAlSiCN/SiBCN and TiAlSiCN/AlOx multilayer coatings. The coatings were obtained by vacuum ion plasma technology combining magnetron and ion sputtering of TiAlSiCN, Si42B45C13, or Al2O3 ceramic targets with high energy ion implantation of growing coating by Ti2+ ions. The structure and properties of the coatings in initial state were analyzed by glow-discharge optical emission spectroscopy, high-resolution transmission electron microscopy, high-resolution scanning electron microscopy, energy dispersive spectroscopy, and nanoindentation. The high-temperature properties were estimated by isothermal and nonisothermal annealing, stepwise heating, and thermal cycling in air and in vacuum. It has been established that TiAlSiCN coating retains a specific nanocolumnar structure of nc-TiAlCN/a-SiCN and ultrahigh hardness of 37–49 GPa in the range of 20–1300°C, heat resistance up to 1000°C, and diffusion-barrier properties constrained by the temperature of 800°C. In comparison with the basic TiAlSiCN coating, the TiAlSiCN/SiBCN multilayer coatings are characterized by higher thermal stability up to 1400°C (TiAlSiCN/SiBCN), oxidation resistance up to 1100°C, resistance to diffusion of elements from substrate up to 1000°C, and resistance to thermal cycling at 1000°C (TiAlSiCN/SiBCN, TiAlSiCN/AlOx).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Xiao, W., Deng, H., Zou, S., et al., J. Nucl. Mater., 2018, vol. 509, pp. 542–549.

    Article  CAS  Google Scholar 

  2. Xi, Y., Bai, Y., Gao, K., et al., Ceram. Int., 2018, vol. 44, pp. 15851–15858.

    Article  CAS  Google Scholar 

  3. Li, J., Zhang, Y., and Zhao, Y., J. Alloys Compd., 2017, vol. 724, pp. 34–44.

    Article  CAS  Google Scholar 

  4. Bashir, M.I., Shafiq, M., Naeem, M., et al., Surf. Coat. Technol., 2017, vol. 327, pp. 59–65.

    Article  CAS  Google Scholar 

  5. Malvajerdi, S.S., Malvajerdi, A.S., and Ghanaatshoar, M., Ceram. Int., 2019, vol. 45, pp. 3816–3822.

    Article  CAS  Google Scholar 

  6. Yan, Z., Jiang, D., Gao, X., et al., Tribol. Int., 2018, vol. 124, pp. 61–69.

    Article  CAS  Google Scholar 

  7. https://www.platit.com/sites/default/files/pdf/coating-guide-ev21-lowres.pdf.

  8. Kiryukhantsev-Korneev, F.V., Petrzhik, M.I., Sheveiko, A.N., et al., Phys. Met. Metallogr., 2007, vol. 104, pp. 167–174.

    Article  Google Scholar 

  9. Niu, E.W., Li, L., Lv, G.H., et al., Appl. Surf. Sci., 2008, vol. 254, pp. 3909–3914.

    Article  CAS  Google Scholar 

  10. Andreev, A., Beresnev, V.M., Volosova, M.A., et al., J. Frict. Wear, 2013, vol. 34, no. 3, pp. 175–182.

    Article  Google Scholar 

  11. Feng, W., Zhou, H., and Yang, S.-Z., Mater. Chem. Phys., 2010, vol. 124, pp. 287–290.

    Article  CAS  Google Scholar 

  12. Ichimiya, N., Onishi, Y., and Tanaka, Y., Surf. Coat. Technol., 2005, vol. 200, pp. 1377–1382.

    Article  CAS  Google Scholar 

  13. Severo, V., Vilhena, L., Silva, P.N., et al., J. Mater. Process. Technol., 2009, vol. 209, pp. 4662–4667.

    Article  CAS  Google Scholar 

  14. Shtansky, D.V., Sheveyko, A.N., Sorokin, D.I., et al., Surf. Coat. Technol., 2008, vol. 202, pp. 5953–5961.

    Article  CAS  Google Scholar 

  15. Li, B., Liu, Q., Chen, M., et al., Surf. Coat. Technol., 2018, vol. 354, pp. 175–183.

    Article  CAS  Google Scholar 

  16. PalDey, S. and Deevi, S.C., Mater. Sci. Eng., 2003, vol. 342, pp. 58–79.

    Article  Google Scholar 

  17. Zhang, X., Jiang, J., Yuqiao, Z., et al., Surf. Coat. Technol., 2008, vol. 203, pp. 594–597.

    Article  CAS  Google Scholar 

  18. Jeong, Y.K., Kang, M.C., Kwon, S.H., et al., Curr. Appl. Phys., 2009, vol. 9, pp. S141–S144.

    Article  Google Scholar 

  19. Yoo, Y.H., Le, D.P., Kim, J.G., et al., Thin Solid Films, 2008, vol. 516, pp. 3544–3548.

    Article  CAS  Google Scholar 

  20. Derflinger, V.H., Schütze, A., and Ante, M., Surf. Coat. Technol., 2006, vol. 200, pp. 4693–4700.

    Article  CAS  Google Scholar 

  21. Veprek, S., Männling, H.-D., Jilek, M., and Holubar, P., Mater. Sci. Eng., A, 2004, vol. 366, pp. 202–205.

    Article  CAS  Google Scholar 

  22. Holubar, P., Jilek, M., and Sima, M., Surf. Coat. Technol., 2000, vols. 133–134, pp. 145–151.

    Article  Google Scholar 

  23. Park, I.-W., et al., J. Korean Phys. Soc., 2003, vol. 42, pp. 783–786.

    CAS  Google Scholar 

  24. Vennemann, A., Stock, H.-R., Kohlscheen, J., et al., Surf. Coat. Technol., 2003, vols. 174–175, pp. 408–415.

    Article  CAS  Google Scholar 

  25. Kiryukhantsev-Korneev, F.V., Kuptsov, K.A., Sheveyko, A.N., et al., Russ. J. Non-Ferrous Met., 2013, vol. 54, pp. 330–335.

    Article  Google Scholar 

  26. Kuptsov, K.A., Kiryukhantsev-Korneev, Ph.V., Sheveyko, A.N., and Shtansky, D.V., Surf. Coat. Technol., 2013, vol. 216, pp. 273–281.

    Article  CAS  Google Scholar 

  27. Shtansky, D.V., Kuptsov, K.A., Kiryukhantsev-Korneev, Ph.V., et al., Surf. Coat. Technol., 2011, vol. 205, pp. 4640–4648.

    Article  CAS  Google Scholar 

  28. Shtansky, D.V., Kuptsov, K.A., Kiryukhantsev-Korneev, Ph.V., and Sheveyko, A.N., Surf. Coat. Technol., 2012, vol. 206, pp. 4840–4849.

    Article  CAS  Google Scholar 

  29. Bondarev, A.V., Kiryukhantsev-Korneev, Ph.V., Sheveyko, A.N., and Shtansky, D.V., Appl. Surf. Sci., 2015, vol. 327, pp. 253–261.

    Article  CAS  Google Scholar 

  30. Kuptsov, K.A., Kiryukhantsev-Korneev, Ph.V., Sheveyko, A.N., and Shtansky, D.V., Acta Mater., 2015, vol. 83, pp. 408–418.

    Article  CAS  Google Scholar 

  31. Kiryukhantsev-Korneev, F.V., Sheveiko, A.N., Komarov, V.A., et al., Russ. J. Non-Ferrous Met., 2011, vol. 52, pp. 311–318.

    Article  Google Scholar 

  32. Kuptsov, K.A., Kiryukhantsev-Korneev, Ph.V., Sheveyko, A.N., and Shtansky, D.V., Appl. Surf. Sci., 2015, vol. 347, pp. 713–718.

    Article  CAS  Google Scholar 

  33. Riedl, H., Aschauer, E., Kolleret, C.M., et al., Surf. Coat. Technol., 2017, vol. 328, pp. 80–88.

    Article  CAS  Google Scholar 

  34. Aschauer, E., Sackl, S., Schachinger, T., et al., Surf. Coat. Technol., 2018, vol. 349, pp. 480–487.

    Article  CAS  Google Scholar 

  35. Jeong, J.J. and Lee, C.M., Appl. Surf. Sci., 2003, vol. 214, pp. 11–19.

    Article  CAS  Google Scholar 

  36. Raab, R., et al., Surf. Coat. Technol., 2017, vol. 324, pp. 236–242.

    Article  CAS  Google Scholar 

  37. Zeman, P., Capek, J., Cerstvy, R., and Vlcek, J., Thin Solid Films, 2010, vol. 519, pp. 306–311.

    Article  CAS  Google Scholar 

  38. He, J., Zhang, M., Jiang, J., et al., Thin Solid Films, 2013, vol. 542, pp. 167–173.

    Article  CAS  Google Scholar 

  39. Kiryukhantsev-Korneev, Ph.V., Sheveyko, A.N., Lemesheva, M., et al., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 5, pp. 873–878.

    Article  CAS  Google Scholar 

  40. Feng, Z., Guo, Z., Biao, L., et al., Key Eng. Mater., 2014, vols. 602–603, pp. 393–396.

    Article  CAS  Google Scholar 

  41. Guo, X., Wang, D., Guo, Z., et al., Surf. Coat. Technol., 2018, vol. 350, pp. 101–109.

    Article  CAS  Google Scholar 

  42. Kiryukhantsev-Korneev, Ph.V., Sheveyko, A.N., Levashov, E.A., Shtansky, D.V., Russ. J. Non-Ferrous Met., 2015, vol. 56, pp. 540–547.

    Article  Google Scholar 

  43. Kiryukhantsev-Korneev, Ph.V. and Potanin, A.Yu., Russ. J. Non-Ferrous Met., 2018, vol. 59, no. 6, pp. 698–708.

    Article  Google Scholar 

  44. Kiryukhantsev-Korneev, F.V., Lemesheva, M.V., Shvyndina, N.V., et al., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 6, pp. 1147–1156.

    Article  CAS  Google Scholar 

  45. Levashov, E.A., Kurbatkina, V.V., Patsera, E.I., et al., Russ. J. Non-Ferrous Met., 2010, vol. 51, pp. 403–433.

    Article  Google Scholar 

  46. Potanin, A.Yu., Zvyagintseva, N.V., Pogozhev, Yu.S., et al., Int. J. Self-Propag. High-Temp. Synth., 2015, vol. 24, pp. 119–127.

    Article  CAS  Google Scholar 

  47. Kiryukhantsev-Korneev, F.V., Russ. J. Non-Ferrous Met., 2014, vol. 55, no. 5, pp. 494–504.

    Article  Google Scholar 

  48. Kiryukhantsev-Korneev, Ph.V., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 5, pp. 585–590.

    Article  CAS  Google Scholar 

  49. Levashov, E.A., Shtansky, D.V., Kiryukhantsev-Korneev, Ph.V., et al., Russ. Metall. (Engl. Transl.), 2010, vol. 2010, no. 10, pp. 917–935.

  50. Kiryukhantsev-Korneev, F.V., Novikov, A.V., Sagalova, T.B., et al., Phys. Met. Metallogr., 2017, vol. 118, no. 11, pp. 1136–1146.

    Article  CAS  Google Scholar 

  51. Horling, A., Sjolen, J., Karlsson, L., et al., J. Vac. Sci. Technol., A, 2002, vol. 20, pp. 1815–1823.

    Article  CAS  Google Scholar 

  52. Chen, L., Paulitsch, J., Du, Y., and Mayrhofer, P.H., Surf. Coat. Technol., 2012, vol. 206, pp. 2954–2960.

    Article  CAS  Google Scholar 

  53. Xu, Y.X., Chen, L., Pei, F., et al., Thin Solid Films, 2014, vol. 565, pp. 25–31.

    Article  CAS  Google Scholar 

  54. Ljungcrantz, H., Engström, C., Hultman, L., et al., J. Vac. Sci. Technol., A, 1998, vol. 16, no. 5, p. 3104.

    Article  CAS  Google Scholar 

  55. Gao, C.K., Yan, J.Y., Dong, L., and Li, D.J., Appl. Surf. Sci., 2013, vol. 285, part B, pp. 287–292.

  56. Houška, J., Vlček, J., Potocký, Š., and Peřina, V., Diamond Relat. Mater., 2007, vol. 16, pp. 29–36.

    Article  CAS  Google Scholar 

  57. Musil, J. and Hruby, H., Thin Solid Films, 2000, vol. 365, pp. 104–109.

    Article  CAS  Google Scholar 

  58. Taniguchi, S., Fujimoto, S., Katoh, T., and Shibata, T., Mater. High Temp., 2000, vol. 17, pp. 35–40.

    Article  CAS  Google Scholar 

  59. Lee, D.B., Nguyen, T.D., and Kim, S.K., Surf. Coat. Technol., 2009, vol. 203, pp. 1199–1204.

    Article  CAS  Google Scholar 

  60. Ai, T., Wang, F., and Feng, X., Sci. China, Ser. E: Technol. Sci., 2009, vol. 52, pp. 1273–1282.

    CAS  Google Scholar 

  61. Hultman, L., Vacuum, 2000, vol. 57, pp. 1–30.

    Article  CAS  Google Scholar 

  62. Shtansky, D.V., Gloushankova, N.A., Sheveiko, A.N., et al., Surf. Coat. Technol., 2010, vol. 205, p. 728–739.

  63. Shtansky, D.V., Petrzhik, M.I., Bashkova, I.A., et al., Phys. Solid State, 2006, vol. 48, no. 7, pp. 1301–1308.

    Article  CAS  Google Scholar 

  64. Kiryukhantsev-Korneev, Ph.V. and Sheveiko, A.N., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 5, pp. 963–968.

    Article  CAS  Google Scholar 

Download references

Funding

The experiments on deposition and annealing of coatings were supported by the Russian Foundation for Basic Research, project no. 13-03-12129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ph. V. Kiryukhantsev-Korneev.

Additional information

Translated by I. Moshkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiryukhantsev-Korneev, P.V., Kuptsov, K.A., Tabachkova, N.Y. et al. Studying the Diffusion-barrier Properties, Thermal Stability and Oxidation Resistance of TiAlSiCN, TiAlSiCN/AlOx, and TiAlSiCN/SiBCN Coatings. Prot Met Phys Chem Surf 57, 1008–1024 (2021). https://doi.org/10.1134/S2070205121050130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121050130

Navigation