Skip to main content
Log in

Chamber Protection of Copper from Atmospheric Corrosion by Compounds of the Triazole Class

  • CORROSION INHIBITORS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Using a set of physicochemical (ellipsometry and contact angle measurements), electrochemical (electrochemical impedance spectroscopy and polarization measurements), and corrosion (periodic moisture condensation and salt fog tests) methods, the properties of adsorption films formed on copper by the chamber method from vapors of benzotriazol (BTA), 1H-1,2,4-triazole, tolyltriazole (TTA), 5-chloro-1,2,3-benzotriazole (CBTA), 3-amino-1H-1,2,4-triazole, and 4-amino-1H-1,2,4-triazole at a temperature of 100°C are studied. It is shown that 1-h chamber treatment of copper with vapors of these compounds leads to the formation of nanoscale hydrophobic adsorption films on it, which inhibits the thermal growth of oxides, but stabilizes the passive state of the metal and increases its corrosion resistance. Among these different triazole compounds tested as chamber corrosion inhibitors, BTA and its substituted derivatives are distinguished. After a 1-h chamber treatment of copper, the protective aftereffect of the adsorption films of triazole derivatives grows symbatically with their saturated vapor pressure at the chamber treatment temperature, i.e., in the following increasing order: CBTA < TTA < BTA. This may indicate that the equilibrium adsorption films do not have time to form at 100°С on the metal within this time period. After a prolonged (24 h or more) chamber treatment of copper with vapors of substituted benzotriazoles, equilibrium adsorption films of inhibitors are formed on it. In this case, the influence of the chamber inhibitor properties on their protective aftereffect alternates. Under such conditions, the least volatile and most hydrophobic substituted benzotriazole, i.e., CBTA, provide the best metal protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. P is the coefficient of distribution of a compound in the octanol–water two-phase system.

REFERENCES

  1. Malvaut, J.Y., Lopitaux, J., Delahaye, D., and Lenglet, M., J. Appl. Electrochem., 1995, vol. 25, p. 841.

    Article  Google Scholar 

  2. Rozenfel’d, I.L. and Persiantseva, V.P., Ingibitory atmosfernoi korrozii (Inhibitors of Atmospheric Corrosion), Moscow: Nauka, 1985.

  3. Fiaud, C., in Corrosion Inhibitors, London: The Institute of Materials, 1994, pp. 1–12.

    Google Scholar 

  4. Andreev, N.N. and Kuznetsov, Yu.I., Russ. Chem. Rev., 2005, vol. 74, no. 8, pp. 685–695.

    Article  CAS  Google Scholar 

  5. Bastidas, D.M., Cano, E., and Mora, E.M., Anti-Corros. Methods Mater., 2005, vol. 52, no. 2, pp. 71–77.

    Article  CAS  Google Scholar 

  6. Subramanian, A., Natesan, M., Muralidharan, V.S., Balakrishnan, K., and Vasudevan, T., Corrosion, 2000, vol. 56, no. 2, pp. 144–155.

    Article  CAS  Google Scholar 

  7. Andreev, N.N. and Kuznetsov, Yu.I., in Reviews on Corrosion Inhibitor Science and Technology, Houston, TX: NACE Int., 2004, pp. II-1–II-18.

    Google Scholar 

  8. Luchkin, A.Yu., Goncharova, O.A., Andreev, N.N., and Kuznetsov, Yu.I., Prakt. Protivokorroz. Zashch., 2017, no. 4 (86), pp. 7–12.

  9. Luchkin, A.Yu., Goncharova, O.A., Andreev, N.N., Kuznetsov, Yu.I., and Andreeva, N.P., Korroz.: Mater., Zashch., 2017, no. 11, pp. 25–31.

  10. Luchkin, A.Yu., Goncharova, O.A., Andreev, N.N., and Kuznetsov, Yu.I., Korroz.: Mater., Zashch., 2017, no. 12, pp. 20–27.

  11. Goncharova, O.A., Kuznetsov, Yu.I., Andreev, N.N., Luchkin, A.Yu., Andreeva, N.P., and Kuznetsov, D.S., Int. J. Corros. Scale Inhib., 2018, no. 3, pp. 340–351.

  12. Goncharova, O.A., Luchkin, A.Yu., Kuznetsov, Yu.I., Andreev, N.N., Andreeva, N.P., and Vesely, S.S., Int. J. Corros. Scale Inhib., 2018, vol. 7, no. 2, pp. 203–212.

    CAS  Google Scholar 

  13. Goncharova, O.A., Andreev, N.N., Luchkin, A.Yu., Kuznetsov, Yu.I., Andreeva, N.P., and Vesely, S.S., Mater. Corros., 2019, vol. 70, pp. 161–168.

    Article  CAS  Google Scholar 

  14. Goncharova, O.A., Luchkin, A.Yu., Kuznetsov, Yu.I., and Andreev, N.N., Korroz.: Mater., Zashch., 2018, no. 8, pp. 8–13.

  15. Heakal, F.E.T. and Haruyama, S., Corros. Sci., 1980, vol. 20, pp. 887–898.

    Article  Google Scholar 

  16. Youda, R., Nishihara, H., and Aramaki, K., Corros. Sci., 1998, vol. 28, pp. 87–96.

    Article  Google Scholar 

  17. Modestov, A.D., Zhou, G.-D., Wu, Y.P., Notoya, T., and Schweinsberg, D.P., Corros. Sci., 1994, vol. 36, pp. 1931–1946.

    Article  CAS  Google Scholar 

  18. Tromans, D. and Li, G., Electrochem. Solid-State Lett., 2002, vol. 5, pp. B5–B8.

    Article  CAS  Google Scholar 

  19. Schultz, Z.D., Biggin, M.E., White, J.O., and Gewirth, A.A., Anal. Chem., 2004, vol. 76, pp. 604–609.

    Article  CAS  Google Scholar 

  20. Walsh, J.E., Dhariwal, H.S., Gutierrez-Sosa, A., Finetti, P., Muryn, C.A., and Brookes, N.B., Surf. Sci., 1998, vol. 415, pp. 423–432.

    Article  CAS  Google Scholar 

  21. Chan, H.Y.H. and Weaver, M.J., Langmuir, 1999, vol. 15, pp. 3348–3355.

    Article  CAS  Google Scholar 

  22. Youda, R., Nishihara, H., and Aramaki, K., Electrochim. Acta, 1990, vol. 35, pp. 1011–1017.

    Article  CAS  Google Scholar 

  23. Kosec, T., Merl, D.K., and Milošev, I., Corros. Sci., 2008, vol. 50, pp. 1987–1997.

    Article  CAS  Google Scholar 

  24. Milic, S.M. and Antonijević, M.M., Corros. Sci., 2009, vol. 51, pp. 28–34.

    Article  CAS  Google Scholar 

  25. Khaled, K.F., Electrochim. Acta, 2009, vol. 54, pp. 4345–4352.

    Article  CAS  Google Scholar 

  26. Gopi, D., Govindaraju, K.M., Collins Arun Prakash, V., Angeline Sakila, D.M., and Kavitha, L., Corros. Sci., 2009, vol. 51, pp. 2259–2265.

    Article  CAS  Google Scholar 

  27. Finšgar, M., Lesar, A., Kokalj, A., and Milošev, I., Electrochim. Acta, 2008, vol. 53, pp. 8278–8297.

    Article  Google Scholar 

  28. Curkovic, H.O., Stupnisek-Lisac, E., and Takenouti, H., Corros. Sci., 2010, vol. 52, pp. 398–405.

    Article  Google Scholar 

  29. Antonijević, M.M., Milić, S.M., and Petrović, M.B., Corros. Sci., 2009, vol. 51, pp. 1228–1237.

    Article  Google Scholar 

  30. Quartarone, G., Battilana, M., Bonaldo, L., and Tortato, T., Corros. Sci., 2008, vol. 50, pp. 3467–3474.

    Article  CAS  Google Scholar 

  31. Al Kharafi, F.M., Abdullah, A.M., and Ateya, B.G., J. Appl. Electrochem., 2007, vol. 37, pp. 1177–1182.

    Article  CAS  Google Scholar 

  32. Bayoumi, F.M. and Abdullah, A.M., Mater. Corros., 2008, vol. 59, pp. 691–696.

    Article  CAS  Google Scholar 

  33. Modestov, A.D., Zhou, G.-D., Wu, Y.-P., and Schweinsberg, D.P., Corros. Sci., 1994, vol. 36, pp. 1931–1946.

    Article  CAS  Google Scholar 

  34. Mamas, S. and Kabasakaloglu, M., Mater. Chem. Phys., 2005, vol. 93, pp. 41–47.

    Article  CAS  Google Scholar 

  35. Heakal, F.El-T. and Haruyama, S., Corros. Sci., 1980, vol. 20, pp. 887–898.

    Article  Google Scholar 

  36. Al Kharafi, F.M., Abdullah, A.M., Ghayad, I.M., and Ateya, B.G., Appl. Surf. Sci., 2007, vol. 253, pp. 8986–8991.

    Article  CAS  Google Scholar 

  37. Mountassir, Z. and Srhiri, A., Corros. Sci., 2007, vol. 49, pp. 1350–1361.

    Article  CAS  Google Scholar 

  38. Ma, H., Chen, S., Yin, B., Zhao, S., and Liu, X., Corros. Sci., 2003, vol. 45, pp. 867–882.

    Article  CAS  Google Scholar 

  39. Mansfeld, F., Kendig, M.W., and Tsai, S., Corrosion, 1982, vol. 38, no. 9, pp. 478–485.

    Article  CAS  Google Scholar 

  40. Altaf, F., Qureshi, R., and Ahmed, S., J. Electroanal. Chem., 2011, vol. 659, pp. 134–142.

    Article  CAS  Google Scholar 

  41. Chen, Z., Huang, L., Zhang, G., Qiu, Y., and Guo, X., Corros. Sci., 2012, vol. 65, pp. 214–222.

    Article  CAS  Google Scholar 

  42. Kichigin, V.I., Sherstobitova, I.N., and Shein, A.B., Impedans elektrokhimicheskikh i korrozionnykh sistem (Impedance of Electrochemical and Corrosion Systems), Perm: Perm State Univ., 2009.

  43. Kosec, T., Merl, D.K., and Milošev, I., Corros. Sci., 2008, vol. 50, pp. 1987–1997.

    Article  CAS  Google Scholar 

  44. Andreev, N.N. and Kuznetsov, Yu.I., Zh. Fiz. Khim., 1993, vol. 67, no. 9, pp. 1912–1914.

    CAS  Google Scholar 

  45. Andreev, N.N. and Kuznetsov, Yu.I., Zh. Fiz. Khim., 1993, vol. 67, no. 10, pp. 1979–1982.

    CAS  Google Scholar 

  46. Andreev, N.N., Kuznetsov, Yu.I., and Storozhenko, T.Yu, Mendeleev Commun., 1994, no. 5, pp. 173–174.

  47. Andreev, N.N. and Kuznetsov, Yu.I., Proc. 8th European Symposium on Corrosion Inhibitors, Ferrara, 1995, pp. 651–662.

  48. Andreev, N.N. and Kuznetsov, Yu.I., Prot. Met., 1996, vol. 32, no. 2, pp. 148–154.

    CAS  Google Scholar 

  49. Andreev, N.N., Prot. Met., 1998, vol. 34, no. 2, pp. 101–111.

    CAS  Google Scholar 

Download references

Funding

This study was supported by grant no. 17-13-01413 “Fundamental Aspects of the Formation of Ultrathin Passivating Films of Organic Compounds on Metals for Protection from Atmospheric Corrosion” from the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Kuznetsov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncharova, O.A., Luchkin, A.Y., Andreev, N.N. et al. Chamber Protection of Copper from Atmospheric Corrosion by Compounds of the Triazole Class. Prot Met Phys Chem Surf 56, 1276–1284 (2020). https://doi.org/10.1134/S2070205120070072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120070072

Keywords:

Navigation