Skip to main content
Log in

Chemical Composition and Mechanical Properties of Coatings Based on TiN Formed Using a Condensation with Ion Bombardment

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The morphology, composition, and chemical state of coating elements based on titanium nitride (TiN) formed by the method of condensation with ion bombardment at different modes on Hadfield steel substrates (110G13L grade) have been studied by the methods of SEM, EDX, and XPS. It has been established that, in the formed coatings, the highest titanium content was in the composition of nitride and oxynitride, whereas there was also a certain amount of titanium and titanium oxides chemically bonded to carbon. It has been shown that titanium in the metallic state was absent for all the studied modes of coating formation and, therefore, the drop macrofraction formation did not proceed at these conditions. XPS layer-by-layer analysis demonstrated that coatings had a heterogeneous composition over depth. The microhardness of samples was studied by the Vickers test. The highest microhardness values were observed for the samples with coatings formed for 35 and 50 min, presumably as the result of higher content of compounds of the TiNxCyOz type with higher hardness than that of TiN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Jafari, A., Ghoranneviss, Z., Elahi, A.S., et al., Adv. Mech. Eng., 2014, vol. 2014, article ID 373847.

    Article  Google Scholar 

  2. Andreev, A.A., Sablev, L.P., and Shulaev, V.M., Vakuumno-dugovye pokrytiya (Vacuum-Arc Coatings), Kharkiv: National Science Center, Kharkov Institute of Physics and Technology, 2010.

  3. Fortuna, S.V., Sharkeev, Y.P., Perry, A.J., et al., Thin Solid Films, 2000, vols. 377–378, p. 512.

    Article  Google Scholar 

  4. Karpov, D.A., Bondarchuk, E.N., Kuznetsov, V.C., and Litunovskii, V.N., Snizhenie soderzhaniya makrofraktsii v vakuumno-dugovom osazhdenii pokrytii (Reducing of Macro-Fractions Content in Vacuum-Arc Coatings Depositing), St. Petersburg: D.V. Efremov Institute of Electrophysical Apparatus, 2009.

  5. Lomino, N.S., Ovcharenko, V.D., and Andreev, A.A., IEEE Trans. Plasma Sci., 2005, vol. 33, p. 1626.

    Article  CAS  Google Scholar 

  6. Olevanov, M.A., Mankelevich, Yu.A., and Rakhimova, T.V., Tech. Phys., 2003, vol. 48, no. 10, p. 1270.

    Article  CAS  Google Scholar 

  7. Khoroshikh, V.M., Fiz. Inzh. Poverkhn., 2005, vol. 2, p. 200.

    Google Scholar 

  8. Pan, W.L., Yu, G.P., and Huang, J.H., Surf. Coat. Technol., 1998, vol. 110, p. 111.

    Article  CAS  Google Scholar 

  9. Johnson, C.A., Ruud, J.A., Bruce, R., and Wortman, D., Surf. Coat. Technol., 1998, vol. 108, p. 80.

    Article  Google Scholar 

  10. Pogrebnyak, A.D., Shpak, A.P., Azarenkov, N.A., and Beresnev, V.M., Usp. Fiz. Nauk, 2009, vol. 179, p. 35.

    Article  Google Scholar 

  11. Pogrebnyak, A.D., Bagdasaryan, A.A., Yakushchenko, I.V., and Beresnev, V.M., Usp. Khim., 2014, vol. 83, p. 1027.

    Article  Google Scholar 

  12. Pogrebnyak, A.D., Beresnev, V.M., Bondar, O.V., et al., Tech. Phys. Lett., 2018, vol. 44, no. 2, pp. 98–101.

    Article  Google Scholar 

  13. Korotaev, A.D., Moshkov, V.Yu., Ovchinnikov, S.V., et al., Fiz. Mezomekh., 2005, vol. 8, p. 103.

    Google Scholar 

  14. Hörlinga, A., Hultman, L., Odén, M., et al., Surf. Coat. Technol., 2005, vol. 191, p. 384.

    Article  Google Scholar 

  15. Jang, C.S., Jeon, J.-H., Song, P.K., et al., Surf. Coat. Technol., 2005, vol. 200, p. 1501.

    Article  CAS  Google Scholar 

  16. Veprek, S., Veprek-Heijman, M., Karvankova, P., and Prochazka, J., Thin Solid Films, 2005, vol. 476, p. 1.

    Article  CAS  Google Scholar 

  17. Yeh, J.-W., Ann. Chim. Sci. Mater., 2006, vol. 31, p. 633.

    Article  CAS  Google Scholar 

  18. Zhang, Y., Zuo, T.T., Tang, Z., et al., Prog. Mater. Sci., 2014, vol. 61, p. 1.

    Article  Google Scholar 

  19. Chan, M. and Lu, F., Thin Solid Films, 2009, vol. 517, p. 5006.

    Article  CAS  Google Scholar 

  20. Morales, M., Cucatti, S., Acuna, J.J.S., Zagonel, L.F., et al., J. Phys. D: Appl. Phys., 2013, vol. 46, p. 1.

    Google Scholar 

  21. Alyamovskii, S.I., Zainulin, Yu.G., and Shveikin, G.P., Oksikarbidy i oksinitridy metallov IVA i VA podgrupp (Oxycarbides and Oxynitrides of IVA and VA Metals’ Subgroups), Moscow: Nauka, 1981.

  22. Dao, V., Hoa, N.T.Q., Larina, L.L., Leed, J., et al., Nanoscale, 2013, vol. 5, p. 12237.

    Article  CAS  Google Scholar 

  23. Shah, S.A., Habib, T., Gao, H., Gao, P., et al., Chem. Commun., 2017, vol. 53, p. 400.

    Article  CAS  Google Scholar 

  24. Nesov, S.N., Korusenko, P.M., Bolotov, V.V., Povoroznyuk, S.N., et al., Phys. Solid State, 2017, vol. 59, no. 10, p. 2030.

    Article  CAS  Google Scholar 

  25. Jaeger, D. and Patscheider, J., Surf. Sci. Spectra, 2013, vol. 20, p. 1.

    Article  CAS  Google Scholar 

  26. Lin, M.C., Chen, M.-J., and Chang, L.-S., Appl. Surf. Sci., 2010, vol. 256, p. 7242.

    Article  CAS  Google Scholar 

  27. Nakatsuka, O., Hisada, K., Oida, S., Sakai, A., et al., Jpn. J. Appl. Phys., 2016, vol. 55, article ID 06JE02.

    Article  Google Scholar 

  28. Lütjering, G. and Williams, J.C., Titanium, Berlin, Heidelberg: Springer, 2003.

    Book  Google Scholar 

  29. Zamulaeva, E.I., Levashov, E.A., Sviridova, T.A., Shvyndina, N.V., et al., Izv. Vyssh. Uchebn. Zaved., Poroshk. Metall. Funkts. Pokrytiya, 2013, no. 3, p. 73.

  30. Zhu, G., Wang, W., Wang, R., Zhao, C.W., et al., Materials, 2017, vol. 10, article ID 1007.

    Article  Google Scholar 

  31. Farhadizadeh, A.R., Amadeh, A.A., and Ghomi, H., Commun. Theor. Phys., 2017, vol. 68, p. 678.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to K. Ivlev, a colleague at the Omsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, for carrying out research of samples by the SEM method, and also to the management of Omsk Regional Core Facility Center of Siberian Branch of the Russian Academy of Sciences for providing the equipment for the study of samples by SEM and EDX methods.

Funding

This work was partially supported by research project of Omsk State Technical University no. 19074B (in the part of the study of the coating formed at 15 min) and by the Ministry of Education and Science of the Russian Federation as part of a state order, project no. 0806-2018-0012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Korusenko.

Additional information

Translated by D. Marinin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korusenko, P.M., Nesov, S.N., Povoroznyuk, S.N. et al. Chemical Composition and Mechanical Properties of Coatings Based on TiN Formed Using a Condensation with Ion Bombardment. Prot Met Phys Chem Surf 56, 539–548 (2020). https://doi.org/10.1134/S2070205120030193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120030193

Keywords:

Navigation