Skip to main content
Log in

Investigation of Removal of Cu(II) Ions by Commercial Activated Carbon: Equilibrium and Thermodynamic Studies

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The present study deals with the application of activated carbon for the adsorptive removal of Cu(II) from its aqueous solutions. This paper incorporates the effects of pH, adsorbent dose, contact time, concentration and temperature. Equilibrium adsorption isotherms are usually used to determine the capacity of an adsorbent. The adsorption behavior of the Cu(II) has been studied using Langmuir and Freundlich adsorption isotherm models. The monolayer adsorption capacity determined from the Langmuir adsorption equation has been found as 13.7 mg g–1. Adsorption of Cu(II) on adsorbent was found to increase on decreasing initial concentration, increasing pH up to 7 and increasing temperature. The paper discusses the thermodynamic parameters of the adsorption (the Gibbs free energy, entropy and enthalpy). Our results demonstrate that the adsorption process was spontaneous and endothermic under natural conditions. SPSS software was employed for prediction and investigation of factor importance in determining of reminded Cu(II) after adsorption. According to Beta-value the importance order of factors is: concentration, adsorbent dose, time, pH and temperature respectively. Also, the obtained results from this study show the good adaptation between experimental and prediction values of % Cu(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Kobya, M., Demirbas, E., Senturk, E., and Ince, M., Bioresour. Technol., 2005, vol. 96, p. 1518.

    Article  Google Scholar 

  2. Wu, Y., Zhou, J., Wen, Y., Jiang, L., and Wu, Y.J., Appl. Biochem. Biotechnol., 2012, vol. 168, p. 2079.

    Article  Google Scholar 

  3. Mahmoud, A.M., Ibrahim, F.A., Shaban, S.A., and Youssef, N.A., Egypt. J. Pet., 2015, vol. 24, p. 27.

    Google Scholar 

  4. Mohamed, Z., Abdelkarim, A., Ziat, K., and Mohamed, S., J. Mater. Environ. Sci., 2016, vol. 7, p. 566.

    Google Scholar 

  5. Cay, S., Uyanik, A., and Ozasik, A., Sep. Purif. Technol., 2004, vol. 38, p. 273.

    Article  Google Scholar 

  6. Dang, V.B.H., Doang-Vu, H.D., and Lohi, A., Bioresour. Technol., 2009, vol. 100, p. 211.

    Article  Google Scholar 

  7. Li, N. and Bai, R., Sep. Sci. Technol., 2009, vol. 42, p. 237.

    Google Scholar 

  8. Muzenda, E., Kabuba, J., Ntuli, F., Mollagee, M., and Mulaba-Bafubiandi, A.F., Proc. World Congress on Engineering and Computer Science, San Francisco, CA, 2011, vol. 2, pp. 19–21.

  9. Huang, Y.H., Hsueh, C.L., Cheng, H.P., Su, L.C., and Chen, C.Y., J. Hazard. Mater., 2007, vol. 44, p. 406.

    Article  Google Scholar 

  10. Sudha Rani, K., Srinivas, B., Gouru Naidu, K., and Ramesh, K.V., Mater. Today: Proc., 2016. Sudha Rani, K., Srinivas, B., Gouru Naidu, K., and Ramesh, K.V., Mater. Today: Proc., 2018, vol. 5, no. 1, p. 463.

    Google Scholar 

  11. Rao, M.M., Ramesh, A., Rao, G.P.C., and Seshaiah, K., J. Hazard. Mater., 2006, vol. 129, p. 123.

    Article  Google Scholar 

  12. Amosa, M.K., Environ. Nanotechnol. Monit. Manage., 2015, vol. 4, p. 93.

    Google Scholar 

  13. Lakherwal, D., Rattan, V.K., and Singh, H.P., Can. Chem. Trans., 2016, vol. 4, p. 121.

    Google Scholar 

  14. Machida, M., Yamazaki, R., Aikawa, M., and Tatsumoto, H., Sep. Purif. Technol., 2005, vol. 46, p. 88.

    Article  Google Scholar 

  15. Krishnan, K.A., Sreejalekshmi, K.G., and Varghese, S., Desalination, 2010, vol. 257, p. 46.

    Article  Google Scholar 

  16. Al Othman, Z.A., Habila, M.A., Ali, R., Ghafar, A.A., and El-din Hassouna, M. S., Arabian J. Chem., 2014, vol. 7, p. 1148.

    Article  Google Scholar 

  17. Yang, T. and Lua, A.C., Mater. Chem. Phys., 2006, vol. 100, p. 438.

    Article  Google Scholar 

  18. Saif, M.M.S., Siva Kumar, N., and Prasad, M.N.V., Colloids Surf., B, 2012, vol. 94, p. 73.

    Article  Google Scholar 

  19. Tan, A.L. and Ahmad Hameed, B., J. Hazard. Mater., 2008, vol. 154, p. 337.

    Article  Google Scholar 

  20. Tan, A. and Ahmad Hameed, B., J. Hazard. Mater., 2009, vol. 164, p. 473.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the Golestan University for providing financial support of the work described in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narges Samadani Langeroodi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elaheh Safaei, Langeroodi, N.S. & Baher, E. Investigation of Removal of Cu(II) Ions by Commercial Activated Carbon: Equilibrium and Thermodynamic Studies. Prot Met Phys Chem Surf 55, 28–33 (2019). https://doi.org/10.1134/S2070205119010180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119010180

Keywords:

Navigation