Skip to main content
Log in

Regularities of Vacuum Oxidation of Iron in the Range of Low-Temperature Passivation According to the Data of Spectral Ellipsometry

  • Investigation Methods for Physicochemical Systems
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The methods of spectral ellipsometry and nanotomography are used to study the kinetics of formation of oxide layer phase components (magnetite and hematite) on the iron surface under the conditions of vacuum treatment, in the region of low-temperature gas passivation manifestation. In the course of oxidation at the temperature of 300°C and vacuum treatment at 1 Torr, an island and, then, a solid layer of magnetite grows on the surface of iron. Further oxidation results in growth of α-Fe2O3 in the form of plates at the magnetite–gas boundary depthward into magnetite. It forms an island film consisting of hematite microcrystallites on the surface of magnetite when this magnetite surface is coated. Island coalescence occurs under longterm oxidation exposure, which leads to formation of a solid layer consisting of hematite microcrystallites with thin intergrain boundaries. Here, a “puzzle” surface structure is observed, in which crystallite boundaries approximately correspond to their neighbors and, therefore, result in complete coating of the surface. Such a layer efficiently hinders oxygen diffusion, which passivates the metal and prevents formation of a thick magnetite layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thin Films: Interdiffusion and Reactions, Poate, J.M., Tu, K.N., and Mayer, J.W., Eds., New York: Wiley-Interscience, 1978.

  2. Suzdalev, I.P., Nanotekhnologiya: fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov (Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials), Moscow: Kom-Kniga, 2006.

    Google Scholar 

  3. Surface Modification and Alloying by Laser, Ion, and Electron Beams, Poate, J.M., Foti, G., and Jacobson, D.C., Eds., New York: Plenum Press, 1983.

  4. Roberts, M.W. and McKee, C.S., Chemistry of the Metal-Gas Interface, Oxford: Clarendon Press, 1978.

    Google Scholar 

  5. Khimushin, F.F., Nerzhaveyushchie stali (Stainless Steels), Moscow: Metallurgiya, 1967.

    Google Scholar 

  6. Fehlner, F.P., Low-Temperature Oxidation: The Role of Vitreous Oxides, New York, Princeton, NJ: John Wiley and Sons, 1986.

    Google Scholar 

  7. L’Oxydation des Metaux, Bénard, J., Ed., Paris: Gauthier-Villars, 1962, vol.2.

  8. Kotenev, V.A. and Tsivadze, A.Yu., Prot. Met., 2007, vol. 43, no. 5, pp. 445–453.

    Article  Google Scholar 

  9. Kotenev, V.A., Petrunin, M.A., Maksaeva, L.B., and Tsivadze, A.Yu., Prot. Met., 2005, vol. 41, no. 6, pp. 507–520.

    Article  Google Scholar 

  10. Boggs, W.E., Kachik, R.H., and Pellizier, G.E., J. Electrochem. Soc., 1965, vol. 112, no. 6, pp. 539–546.

    Article  Google Scholar 

  11. Boggs, W.E., Kachik, R.H., and Pellizier, G.E., J. Electrochem. Soc., 1967, vol. 114, no. 1, p.32.

    Article  Google Scholar 

  12. Kotenev, V.A., Prot. Met., 2003, vol. 39, no. 3, pp. 260–268.

    Article  Google Scholar 

  13. Kotenev, V.A., Prot. Met., 2003, vol. 39, no. 4, pp. 301–310.

    Article  Google Scholar 

  14. Wagner, K., Corros.Sci., 1965, vol. 5, no. 11, p.751.

    Article  Google Scholar 

  15. Domke, M. and Kuvelos, B., Corros. Sci., 1983, vol. 23, no. 8, p.921.

    Article  Google Scholar 

  16. Szklarska-Smialowska, Z. and Krishnakumar, R., in Electrochemical and Optical Techniques for the Study and Monitoring of Metallic Corrosion, Ferreira, M.G.S. and Melendres, C.A., Eds., Kluwer Academic Publ., 1991, p.285.

  17. Kotenev, V.A., Maksaeva, L.B., and Petrunin, M.A., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 4, pp. 751–756.

    Article  Google Scholar 

  18. Petrunin, M.A., Maksaeva, L.B., Yurasova, T.A., et al., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 6, pp. 964–971.

    Article  Google Scholar 

  19. Kotenev, V.A., Petrunin, M.A., Maksaeva, L.B., et al., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 5, pp. 597–603.

    Article  Google Scholar 

  20. Kotenev, V.A., Proc. SPIE, 1992, vol. 1843, p.259.

    Article  Google Scholar 

  21. Kaiser, J.H., Appl. Phys. B: Photophys. Laser Chem., 1988, vol. 45, p.1.

    Article  Google Scholar 

  22. Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Methods for Solving Incorrect Problems), Moscow: Nauka, 1986.

    Google Scholar 

  23. Azzam, R.M.A. and Bashara, N.M., Ellipsometry and Polarized Light, Amsterdam: North-Holland, 1977.

    Google Scholar 

  24. Verlan’, A.F. and Sizikov, V.S., Integral’nye uravneniya (Integral Equations), Kiev: Naukova Dumka, 1986.

    Google Scholar 

  25. Tanaka, T., Jpn. J. Appl. Phys., 1979, vol. 18, no. 6, pp. 1043–1047.

    Article  Google Scholar 

  26. Gardiner, D.J., Littleton, C.J., Thomas, K.M., and Stratford, K.N., Oxid. Met., 1987, vol. 27, p.57.

    Article  Google Scholar 

  27. Tjong, S.C., Mater. Res. Bull., 1983, vol. 18, p.157.

    Article  Google Scholar 

  28. Hart, T.R., Adams, S.B., and Tempkin, H., Proc. 3rd Int. Conference on Light Scattering in Solids, Balkanski, M., Leite, R.C.C., and Porto, S.P.S., Eds. (Flammarion, Paris, 1976), p.254.

  29. Thibeau, R.J., Brown, C.W., and Heidersbach, R.H., Appl. Spectrosc., 1978, vol. 32, p.532.

    Article  Google Scholar 

  30. Gardiner, D.J., Littleton, C.J., Thomas, K.M., and Stratford, K.N., Oxid. Met., 1987, vol. 27, nos. 1–2, p.57.

    Article  Google Scholar 

  31. Kotenev, V.A. and Tsivadze, A.Yu., Meas. Tech., 2012, vol. 54, no. 12, pp. 1421–1426.

    Article  Google Scholar 

  32. Kotenev, V.A., Petrunin, M.A., Maksaeva, L.B., et al., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 4, pp. 479–484.

    Article  Google Scholar 

  33. Kotenev, V.A., Kiselev, M.R., Vysotskii, V.V., Averin, A.A., and Tsivadze, A.Y., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 5, pp. 825–831.

    Article  Google Scholar 

  34. Kotenev, V.A., Vysotskii, V.V., Averin, A.A., and Tsivadze, A.Y., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 3, pp. 454–461.

    Article  Google Scholar 

  35. Oxide Thin Films, Multilayers, and Nanocomposites, Mele, P., Eds., Springer, 2015.

  36. Destro, F.B., Cilense, M., Nascimento, M.P., et al., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 1, pp. 104–110.

    Article  Google Scholar 

  37. Nanofabrication, Stepanova, M. and Dew, S., Eds., Springer, Wien, 2012.

  38. Mohammadnejad, M., Habibolahzadeh, A., and Yousefpour, M., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 1, pp. 100–103.

    Article  Google Scholar 

  39. Hsu, J.-Y., Kuo, S.-K., and Wu, K.-Y., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 2, pp. 272–278.

    Article  Google Scholar 

  40. Shaik, S., Bagale, U., Ashokkumar, M., and Sonawane, S., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 5, pp. 850–858.

    Article  Google Scholar 

  41. Yuan, L., Jiang, Q., Wang, J., and Zhou, G., J. Mater. Res., 2012, vol. 27, no. 7, p. 1014.

    Article  Google Scholar 

  42. Yuan, L., Wang, Y.Q., Mema, R., and Zhou, G.W., Acta Mater., 2011, vol. 59, p. 2491.

    Article  Google Scholar 

  43. Mema, R., Yuan, L., Du, Q., Wang, Y.Q., and Zhou, G.W., Chem. Phys. Lett., 2011, vol. 512, p.87.

    Article  Google Scholar 

  44. Herring, C., J. Appl. Phys., 1950, vol. 21, p.437.

    Article  Google Scholar 

  45. Korhonen, M.A., Borgesen, P., Tu, K.N., and Li, C.-Y., J. Appl. Phys., 1993, vol. 73, p. 3790.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kotenev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotenev, V.A. Regularities of Vacuum Oxidation of Iron in the Range of Low-Temperature Passivation According to the Data of Spectral Ellipsometry. Prot Met Phys Chem Surf 54, 969–975 (2018). https://doi.org/10.1134/S2070205118050131

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205118050131

Keywords

Navigation