Skip to main content
Log in

Corrosion of AD31 (AA6063) Alloy in Chloride-Containing Solutions

  • Physicochemical Problems of Materials Protection
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Corrosion of AD31 (AA6063) alloy in neutral 0.05 M NaCl solutions is investigated via scanningprobe microscopy, linear-sweep voltammetry, and electrochemical-impedance spectroscopy. Al−Fe−Si−Mg intermetallic particles are determined to prevail in the structure of alloy and act as local cathodes. Intermodulation electrostatic-force-microscopy imaging shows that their Volta potential differs by 570 mV from that of the host aluminum matrix, making the alloy prone to localized corrosion. We show that the corrosion of alloy in the studied electrolyte mainly develops locally and results in pitting, with charge transfer being the limiting stage of the process. A mechanism of corrosion of the AD31 (AA6063) alloy in neutral chloride-containing solutions is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Val’kov, V.S., Korroziya i zashchita alyuminievykh splavov (Corrosion and Protection of Aluminum Alloys), Moscow: Metallurgiya, 1986.

    Google Scholar 

  2. Beletskii, V.M., Alyuminievye splavy. Sostav, svoistva, tekhnologiya, primenenie (Aluminum Alloys. Composition, Properties, Technology, Application), Moscow: Komintekh 2005.

    Google Scholar 

  3. Yasakau, K.A., Handbook of Smart Coatings for Materials Protection, Cambridge: Woodhead Publ. 2014, p. 224.

    Book  Google Scholar 

  4. Eckermann, F., Suter, T., Uggowitzer, T.G., et al., Electrochim. Acta 2008, vol. 54, no. 2, p. 844.

    Article  Google Scholar 

  5. Barbucci, A., Bruzzone, B., Delucchi, M., et al., Intermetallics 2000, vol. 8, no. 3, p. 305.

    Article  Google Scholar 

  6. Mishra, A.K., Balasubramaniam, R., and Tiwari, S., Anti-Corros. Methods Mater. 2007, vol. 54, no 1, p. 37.

    Article  Google Scholar 

  7. Birbilis, N. and Buchheit, R.G., J. Electrochem. Soc., 2005, vol. 152, no. 4, p. 140.

    Article  Google Scholar 

  8. Leblanc, P. and Frankel, G.S., J. Electrochem. Soc., 2002, vol. 149, no. 6, p. 239.

    Article  Google Scholar 

  9. Park, J.O., J. Electrochem. Soc., 1999, vol. 146, no. 2, p. 517.

    Article  Google Scholar 

  10. Ilevbare, G.O., Scully, G.R., Schneder, O., and Kelly, R.G., J. Electrochem. Soc., 2004, vol. 151, no. 8, p. 453.

    Article  Google Scholar 

  11. Zhang, F., Nilsson, J.O., and Pan, J., J. Electrochem. Soc., 2016, vol. 163, no. 9, p. 609.

    Article  Google Scholar 

  12. Zeng, F.L., Wei, Z.L., Li, J.F., et al., Trans. Nonferrous Met. Soc. China 2011, vol. 21, no. 12, p. 2559.

    Article  Google Scholar 

  13. Mrówka-Nowotnik, G., Sieniawski, J., and Wierzbiñska, M., Arch. Mater. Sci. Eng. 2007, vol. 28, no. 2, p. 69.

    Google Scholar 

  14. Buchheit, R.G., J. Electrochem. Soc., 1995, vol. 142, no. 11, p. 3994.

    Article  Google Scholar 

  15. Yasakau, K.A., Zheludkevich, M.L., Lamaka, S.V., and Ferreira, M.G.S., Electrochim. Acta 2007, vol. 52, no. 27, p. 7651.

    Article  Google Scholar 

  16. Borgani, R., Forchheimer, D., Bergqvist, J., et al., Appl. Phys. Lett. 2014, vol. 105, no. 14, p. 143113.

    Article  Google Scholar 

  17. Sefer, B., Dobryden, I., Almqvist, N., et al., Corrosion 2017, vol. 73, no. 4, p. 394.

    Article  Google Scholar 

  18. McCafferty, E., Corros. Sci. 2003, vol. 45, no. 7, p. 1421.

    Article  Google Scholar 

  19. Reboul, M.C., Warner, T.J., Mayet, H., and Baroux, B., Corros. Rev. 2011, vol. 15, nos. 3–4, p. 471.

    Google Scholar 

  20. Wit, J.H.W. and Lenderink, H.J.W., Electrochim. Acta 1996, vol. 41, p. 1111.

    Article  Google Scholar 

  21. Wysocka, J., Krakowiak, S., Ryl, J., and Darowicki, K., J. Electroanal. Chem., 2016, vol. 778, p. 126.

    Article  Google Scholar 

  22. Elkin, V.V., Marshakov, A.I., Rybkina, A.A., and Maleeva, M.A., Russ. J. Electrochem. 2011, vol. 47, no. 2, p. 136.

    Article  Google Scholar 

  23. Shulman, J., Hue, Y.Y., Tsui, S., et al., Phys. Rev. B 2009, vol. 80, no. 13, p. 1.

    Article  Google Scholar 

  24. Lee, Y.L., Chu, Y.R., Li, W.C., and Lin, N.S., Corros. Sci. 2013, vol. 70, p. 74.

    Article  Google Scholar 

  25. Vogelsang, J. and Strunz, W., Electrochim. Acta 2001, vol. 46, nos. 24–25, p. 3619.

    Google Scholar 

  26. Iannuzzi, M. and Frankel, G.S., Corrosion 2007, vol. 63, no. 7, p. 672.

    Article  Google Scholar 

  27. Birbilis, N. and Buchheit, R.G., J. Electrochem. Soc., 2008, vol. 155, no. 3, p. 117.

    Article  Google Scholar 

  28. Guseva, O., Derose, J.A., and Schmutz, P., Electrochim. Acta 2013, vol. 88, p. 821.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Kharitonov.

Additional information

Original Russian Text © D.S. Kharitonov, I.B. Dobryden’, B. Sefer, I.M. Zharskii, P.M. Claesson, I.I. Kurilo, 2018, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2018, Vol. 54, No. 2, pp. 183–193.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharitonov, D.S., Dobryden’, I.B., Sefer, B. et al. Corrosion of AD31 (AA6063) Alloy in Chloride-Containing Solutions. Prot Met Phys Chem Surf 54, 291–300 (2018). https://doi.org/10.1134/S2070205118020077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205118020077

Navigation