Skip to main content
Log in

The Effect of Alternating Current on Rate of Dissolution of Carbon Steel in Chloride Electrolyte. Part I. Conditions of Free Corrosion

  • General Corrosion Problems
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The influence of alternating current on the potential and rate of free corrosion of carbon steel in a 3.5% NaCl solution are studied. Existing quantitative concepts about metal corrosion under the action of alternating current are considered, and their areas of applicability for describing the studied corrosion system are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evans, U.R., The Corrosion and Oxidation of Metals, Hodder Arnold, 1960.

    Google Scholar 

  2. Mikhailovskii, Yu.N., in Korroziya metallov i splavov (Corrosion of Metals and Alloys), Moscow: Metallurgizdat, 1963, p. 222.

    Google Scholar 

  3. Simon, P.D., Schmidt, J.T., and Mumme, B.K., Proc. Corrosion Conference and Expo CORROSION/2007, Nashville, TN: NACE Int., 2007, Paper no. 07650.

    Google Scholar 

  4. Ruan, W., Southey, R.D., Tee, S., et al., Proc. Corrosion Conference and Expo CORROSION/2007, Nashville, TN: NACE Int., 2007, Paper no. 07652.

    Google Scholar 

  5. Ibrahim, I., Takenouti, H., Tribollet, B., et al., Proc. Corrosion Conference and Expo CORROSION/2007, Nashville, TN: NACE Int., 2007, Paper no. 07042.

    Google Scholar 

  6. Fu, A.Q. and Cheng, Y.F., Corros. Sci., 2010, vol. 52, no. 2, pp. 612–619.

    Article  Google Scholar 

  7. Goidanich, S., Lazzari, L., and Ormellese, M., Corros. Sci., 2010, vol. 52, no. 2, pp. 491–497.

    Article  Google Scholar 

  8. Goidanich, S., Lazzari, L., and Ormellese, M., Corros. Sci., 2010, vol. 52, no. 3, pp. 916–922.

    Article  Google Scholar 

  9. Xu, L.Y., Su, X., Yin, Z.X., et al., Corros. Sci., 2012, vol. 61, pp. 215–223.

    Article  Google Scholar 

  10. Zhang, R., Vairavanathan, P.R., and Lavlani, S.B., Corros. Sci., 2008, vol. 50, no. 6, pp. 1664–1671.

    Article  Google Scholar 

  11. Muralidharan, S., Kim, D.-K., Ha, T.-H., et al., Desalination, 2007, vol. 216, pp. 103–115.

    Article  Google Scholar 

  12. Min Zhu, Cuiwei Du, Xiaogang Li, et al., Corros. Sci., 2014, vol. 87, pp. 224–232.

    Article  Google Scholar 

  13. Brenna, A., Ormellese, M., and Lazzari, L., Proc. Corrosion Conference and Expo CORROSION/2013, Orlando, FL: NACE Int., 2013, Paper no. 2457.

    Google Scholar 

  14. Zitao Jiang, Yanxia Du, Minxu Lu, et al., Corros. Sci., 2014, vol. 81, pp. 1–10.

    Article  Google Scholar 

  15. Wakelin, R.G., Gummow, R.A., and Segall, S.M., Proc. Corrosion Conference CORROSION 1998, San Diego, CA: NACE Int., 1998, Paper no. 565.

    Google Scholar 

  16. Lalvani, S.B. and Zhang, G., Corros. Sci., 1995, vol. 37, no. 10, pp. 1583–1598.

    Article  Google Scholar 

  17. Bosch, R.W. and Bogaerts, W.F., Corros. Sci., 1998, vol. 40, nos. 2–3, pp. 323–336.

    Article  Google Scholar 

  18. Wang, L.W., Wang, X.H., Cui, Z.Y., et al., Corros. Sci., 2014, vol. 86, pp. 213–222.

    Article  Google Scholar 

  19. Lalvani, S.B. and Lin, X.A., Corros. Sci., 1994, vol. 36, no. 6, pp. 1039–1046.

    Article  Google Scholar 

  20. Lalvani, S.B. and Lin, X.A., Corros. Sci., 1996, vol. 38, no. 10, pp. 1709–1719.

    Article  Google Scholar 

  21. Ibrahim, I., Tribolleti, B., Takenouti, H., and Meyer, M., J. Braz. Chem. Soc., 2015, vol. 26, no. 1, pp. 196–208.

    Google Scholar 

  22. Nielsen, L.V., Proc. Corrosion Conference CORROSION/2005, Houston, TX: NACE Int., 2005, Paper no. 05188.

    Google Scholar 

  23. Carpentiers, P., Gregoor, R., and Pourbaix, A., Proc. Annual Conference of the European Federation of Corrosion (EFC) EUROCORR 2003, Budapest, 2003, Paper no. 307.

    Google Scholar 

  24. CEN/TS 15280. Evaluation of A. C. Corrosion Likelihood of Buried Pipelines–Application to Cathodically Protected Pipelines. Technical Specification. 2006.

  25. Marshakov, A.I., Rybkina, A.A., and Nenasheva, T.A., Korroz.: Mater., Zashch., 2006, no. 5, pp. 2–14.

    Google Scholar 

  26. Nenasheva, T.A. and Marshakov, A.I., Korroz.: Mater., Zashch., 2008, no. 4, pp. 10–15.

    Google Scholar 

  27. Nenasheva, T.A. and Marshakov, A.I., Korroz.: Mater., Zashch., 2009, no. 2, pp. 1–6.

    Google Scholar 

  28. Marshakov, A.I. and Nenasheva, T.A., Korroz.: Mater., Zashch., 2014, no. 4, pp. 14–24.

    Google Scholar 

  29. Nenasheva, T.A. and Marshakov, A.I., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 6, pp. 1018–1026.

    Article  Google Scholar 

  30. Rybkina, A.A., Maleeva, M.A., and Marshakov, A.I., Korroz.: Mater., Zashch., 2014, no. 12, pp. 1–6.

    Google Scholar 

  31. Kim, D.-K., Muralidharan, S., Tae-Hyun Ha, et al., Electrochim. Acta, 2006, vol. 51, no. 25, pp. 5259–5267.

    Article  Google Scholar 

  32. Strandheim, E.O., AC Induced Corrosion of Carbon Steel in 3.5wt% NaCl Electrolyte, Trondheim: Norwegian University of Science and Technology, Department of Materials Science and Engineering, 2012, p. 111.

    Google Scholar 

  33. Kuang, D. and Cheng, Y.F., Corros. Sci., 2014, vol. 85, pp. 304–310.

    Article  Google Scholar 

  34. Instruktsiya po zashchite ot korrozii podzemnykh stal’nykh truboprovodov, raspolozhennykh v zone deistviya rel’sovogo elektrotransporta na peremennom toke (Manual on Corrosion Protection of Underground Steel Pipelines Situated in Action Zone of ac Rail Electric Transport), Moscow: Stroiizdat, 1972, p. 126.

  35. GOST (State Standard) no. 9.602-2005: Unified System of Corrosion and Ageing Protection. Underground Constructions. General Requirements for Corrosion Protection, Moscow, Standartinform, 2006.

  36. RD (Guiding Document) no. 17.220.00-KTN-151-10: Procedure for Determining How Overhead Power Transmission Line (110 kV and higher) Influence onto Oil Pipeline Corrosion and Measures for Pipelines Protection, Moscow, 2010.

  37. STO Gazprom (Company Standard) no. 9.0-001-2009: Corrosion Protection. Basic Principles, Moscow, 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Nenasheva.

Additional information

Original Russian Text © A.I. Marshakov, T.A. Nenasheva, 2016, published in Korroziya: Materialy, Zashchita, 2016, No. 4, pp. 1–11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marshakov, A.I., Nenasheva, T.A. The Effect of Alternating Current on Rate of Dissolution of Carbon Steel in Chloride Electrolyte. Part I. Conditions of Free Corrosion. Prot Met Phys Chem Surf 53, 1214–1221 (2017). https://doi.org/10.1134/S2070205117070139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205117070139

Keywords

Navigation