Skip to main content
Log in

Morphology and Properties of Coatings Obtained by Plasma-Electrolytic Oxidation of Titanium Alloys in Pyrophosphate Electrolytes

  • New Substances, Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

By means of scanning electron microscopy, atomic-force microscopy, X-ray fluorescence analysis, and X-ray spectral microanalysis it was shown that, under plasma-electrolytic oxidation (PEO) of titanium alloys in pyrophosphate electrolytes, well-adhered oxide coatings with microglobular morphology result. It was demonstrated that the chemical and phase composition of the coatings, as well as the surface topography and grain size, can be controlled by changing the concentration of a pyrophosphate electrolyte and a PEO current density. It was established that the resulting oxide layer is highly resistant to abrasive wear and enhances the titanium corrosion resistance in model media (Ringer’s solution) substantially, which suggests that the coatings are promising for use in biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gordienko, P.S. and Gnedenkov, S.V., Plazmennoelektroliticheskoe oksidirovanie titana i ego splavov (Plasma and Electrolytic Oxidation of Titanium and its Alloys), Vladivostok: Dal’nauka, 1997.

    Google Scholar 

  2. Chernenko, V.I., Snezhko, L.A., and Papanova, I.I., Poluchenie pokrytii anodno-iskrovym elektrolizom (Coatings Synthesized by means of Anode-Spark Electrolysis), Leningrad: Khimiya, 1991.

    Google Scholar 

  3. Barros, A.D., Albertin, K.F., Miyoshi, I., et al., Microelectron. Eng., 2010, vol. 87, p.443.

    Article  Google Scholar 

  4. Yerokhin, A.L., Nie, X., Leyland, A., et al., Surf. Coat. Technol., 1999, vol. 122, p.73.

    Article  Google Scholar 

  5. Suminov, I.V., Belkin, P.N., Epel’fel’d, A.V., et al., Plazmenno-elektroliticheskoe modifitsirovanie poverkhnosti metallov i splavov (Plasma and Electrolytic Modification for Metal and Alloy Surfaces), Moscow: Tekhnosfera, 2011.

    Google Scholar 

  6. Wang, Y.M., Iiang, B.L., Lei, T.Q., et al., Appl. Surf. Sci., 2005, vol. 246, nos. 1–3, p.214.

    Article  Google Scholar 

  7. Terleeva, O.P., Belevantsev, V.I., Slonova, A.I., et al., Prot. Met., 2006, vol. 42, no. 3, p.272.

    Article  Google Scholar 

  8. Bykanova, V.V., Sakhnenko, N.D., and Ved’, M.V., Surf. Eng. Appl. Electrochem., 2015, vol. 51, no. 3, p.276.

    Article  Google Scholar 

  9. Sakhnenko, N., Ved, M., and Bykanova, V., Funct. Mater., 2014, vol. 21, no. 4, p.492.

    Article  Google Scholar 

  10. Brunett, D.M., Tengvall, P., Textor, M., et al., Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications (Engineering Materials), Berlin, Heidelberg, New York: Springer, 2001, p.673.

    Book  Google Scholar 

  11. Kasuga, T., Kondo, H., and Nodami, M., J. Cryst. Growth, 2002, vol. 235, p.235.

    Article  Google Scholar 

  12. Zhakenova, S.S. and Amangaliev, A.B., Vestn. Khir., 2011, no. 3, p.93.

    Google Scholar 

  13. Rudnev, V.S., Yarovaya, T.P., Kon’shin, V.V., et al., Prot. Met., 2003, vol. 39, no. 2, p.160.

    Article  Google Scholar 

  14. Kassman, Å., Iacobson, S., Ericson, L., et al., Surf. Coat. Technol., 1991, vol. 50, no. 1, p.75.

    Article  Google Scholar 

  15. Lakel, S., Almi, K., and Berriche, Y., Rom. Rep. Phys., 2007, vol. 59, no. 1, p.113.

    Google Scholar 

  16. Ved’, M.V., Sakhnenko, N.D., and Nikiforov, K.V., J. Adhes. Sci. Technol., 1998, vol. 12, no. 2, p.175.

    Article  Google Scholar 

  17. Lunarska, E., Cherniayeva, O., Ved’, M., et al., Ochr. Koroz., 2007, no. 11A, p.265.

    Google Scholar 

  18. Rudnev, V.S., Yarovaya, T.P., Egorkin, V.S., et al., Russ. J. Appl. Chem., 2010, vol. 83, no. 4, p.664.

    Article  Google Scholar 

  19. Snizhko, L.O., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 6, p.705.

    Article  Google Scholar 

  20. Long, M. and Rack, H.I., Biomaterials, 1998, vol. 19, no. 18, p. 1621.

    Article  Google Scholar 

  21. Cao, H. and Liu, X., Surf. Coat. Technol., 2013, vol. 233, p.57.

    Article  Google Scholar 

  22. Podchernyaeva, I.A., Panashenko, V.M., Vereshchaka, V.M., et al., Mater. Sci., 2009, vol. 45, no. 5, p.734.

    Article  Google Scholar 

  23. Aver’yanov, E.E., Spravochnik po anodirovaniyu (Handbook on Anodization), Moscow: Mashinostroenie, 1988, pp. 82–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Karakurkchi.

Additional information

Original Russian Text © N.D. Sakhnenko, M.V. Ved’, A.V. Karakurkchi, 2017, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2017, Vol. 53, No. 6, pp. 637–645.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhnenko, N.D., Ved’, M.V. & Karakurkchi, A.V. Morphology and Properties of Coatings Obtained by Plasma-Electrolytic Oxidation of Titanium Alloys in Pyrophosphate Electrolytes. Prot Met Phys Chem Surf 53, 1082–1090 (2017). https://doi.org/10.1134/S207020511706020X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207020511706020X

Keywords

Navigation