Skip to main content
Log in

Activation of metal oxidation over the zone of electrodiffusion

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

It is shown that an oxide layer saturated by chromium oxides is formed on the surface of chromium steel at a higher rate under electrocontact (104–105 A/cm2) vacuum dc annealing (10–2 Torr, 300°C) than under furnace heating. Such activation of oxidation is due to the formation of an electrodiffusion zone in the surface steel layer. At further stages, grain boundaries emerge to the metal surface that act as oxidant transportation channels from the surrounding medium into the conductor bulk, which results in accelerated oxide formation in the bulk of the surface metal layer. Apart from the uniform oxide layer, individual hematite nanoflakes and nanoleaves with the thickness of 50–40 nm and average diameter of 450 nm are formed on the positive electrode and grow vertically on the steel surface. The average surface density of nanoparticles is 108 1/cm2. Such activation of metal oxidation over the zone of electrodiffusion can provide pronounced properties for accelerated formation of protective surface layers, in addition to its intrinsic functional (sensor, catalytic, semiconductor, adsorption) properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thin Films-Interdiffusion and Reactions, Poate, J.M., Tu, K.N., and Mayer, J.W., Eds., New York: Wiley, 1978.

    Google Scholar 

  2. Oxydation des Metaux, Benard, J., Ed., Paris: Gauthier-Villars, 1962, vol. 2.

  3. Kofstad, P., High-Temperature Oxidation, London: Elsevier, 1988.

    Google Scholar 

  4. Lyons, L.E. and Rieme, W., Aust. J. Chem., 1972, vol. 25, p. 2069.

    Article  Google Scholar 

  5. Kotenev, V.A. and Fokin, M.N., Prot. Met., 1995, vol. 31, no. 1, p. 53.

    Google Scholar 

  6. Avouris, Ph., Martel, R., Hertel, T., and Sandstrom, R., J. Appl. Phys., 1998, vol. 66, p. S659.

    Article  Google Scholar 

  7. Schmidt, T., Martel, R., Sandstrom, R.L., and Avouris, Ph., Appl. Phys. Lett., 1998, vol. 73, p. 2173.

    Article  Google Scholar 

  8. Martel, R., Schmidt, T., Sandstrom, R.L., and Avouris, Ph., J. Vac. Sci. Technol. A, 1999, vol. 17, p. 1451.

    Article  Google Scholar 

  9. Parkansky, N., Alterkop, B., Schuster, W., et al., J. Appl. Phys., 1997, vol. 82, p. 4062

    Article  Google Scholar 

  10. Parkansky, N., Alterkop, B., Goldsmith, S., and Boxman, R., J. Phys. D: Appl. Phys., 1999, vol. 32, p. 1503.

    Article  Google Scholar 

  11. Kotenev, V.A., Tyurin, D.N., Tsivadze, A.Yu., et al., Prot. Met. Phys. Chem. Surf., 2009, vol. 45, p. 616.

    Article  Google Scholar 

  12. Kotenev, V.A., Vysotskii, V.V., Kiselev, M.R., et al., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, p. 785.

    Article  Google Scholar 

  13. Kotenev, V.A., Vysotskii, V.V., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 378.

    Article  Google Scholar 

  14. Optical Sensors and Microsystems. New Concepts, Materials, Technologies, Martellucci, S., Chester, A.N., and Mignani, A.G., Eds., New York: Kluwer, 2000.

    Google Scholar 

  15. Kotenev, V.A. and Tsivadze, A.Yu., Russ. J. Inorg. Chem., 2007, vol. 52, no. 4, p. 567.

    Article  Google Scholar 

  16. Kotenev, V.A. and Tsivadze, A.Yu., Meas. Tech., 2014, vol. 56, p. 10

    Article  Google Scholar 

  17. Azzam, R.M.A. and Bashara, N.M. Ellipsometry and Polarized Light, Amsterdam: North-Holland, 1977.

    Google Scholar 

  18. Kotenev, V.A., Proc. SPIE, 1992, vol. 1843, p. 259.

    Article  Google Scholar 

  19. Kotenev, V.A., Prot. Met. Phys. Chem. Surf., 1997, vol. 33, no. 3, p. 239.

    Google Scholar 

  20. Tanaka, T., Jpn. J. Appl. Phys., 1979, vol. 18, p. 1043.

    Article  Google Scholar 

  21. Idczak, E. and Oleszkiewicz, E., Thin Solid Films, 1981, vol. 77, p. 301.

    Article  Google Scholar 

  22. Winchell, A.N. and Winchell, H., The Microscopical Characters of Artificial Inorganic Solid Substances: Optical Properties of Artificial Minerals, New York: Academic, 1964.

    Google Scholar 

  23. Verhoeven, J., Metall. Rev., 1963, vol. 8, p. 311.

    Article  Google Scholar 

  24. Martin, J.W. and Doherty, R.D., Stability of Microstructure in Metallic Systems, Cambridge: Cambridge University Press, 1976.

    Google Scholar 

  25. Fokin, M.N., Oche, E.K., Kotenev, V.A., et al., in V Oblastnaya konf. po elektrokhimii, korrozii i zashchite metallov v nevodnykh i smeshannykh rastvoritelyakh, Tezisy dokladov (V Regional Conf. on Electrochemistry, Corrosion, and Protection of Metals in Non-Aquatic and Mixed Solvents, Abstracts of Papers), Tambov: Gos. Pedagog. Inst., 1986, p. 20.

    Google Scholar 

  26. Cvelbar, U., Chen, Z., Sunkara, M.K., and Mozetic, M., Small, 2008, vol. 4, p. 1610.

    Article  Google Scholar 

  27. McCarty, K.F. and Boehme, D.R., J. Solid State Chem., 1989, vol. 79, p. 19.

    Article  Google Scholar 

  28. Ningshen, S., Kamachi Mudali, U., Ramya, S., and Baldev, R., Corros. Sci., 2011, vol. 53, p. 64.

    Article  Google Scholar 

  29. Maslar, J.E., Hurst, W.S., Bowers, Jr., et al., J. Electrochem. Soc., 2000, vol. 147, p. 2532.

    Article  Google Scholar 

  30. Maslar, J.E., Hurst, W.S., Bowers, Jr., et al., Appl. Surf. Sci., 2001, vol. 180, p. 102.

    Article  Google Scholar 

  31. Kim, J.H. and Hwang, I.S., Nuclear Eng. Des., 2005, vol. 235, p. 1029.

    Article  Google Scholar 

  32. Tjong, S.C., Mater. Charact., 1991, vol. 26, p. 29.

    Article  Google Scholar 

  33. Kotenev, V.A., Zhorin, V.A., Kiselev, M.R., Vysotskii, V.V., Averin, A.A., Roldugin, V.I., and Tsivadze, A.Y., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 6, p. 792.

    Article  Google Scholar 

  34. Lloyd, J.R., Semicond. Sci. Technol., 1997, vol. 4, p. 1177.

    Article  Google Scholar 

  35. Geguzin, Ya.E., Diffuzionnaya zona (Diffusion Zone), Moscow: Nauka, 1979.

    Google Scholar 

  36. Dunnington, B., Beck, F., and Fontana, M., Corrosion, 1952, vol. 8, p. 2.

    Article  Google Scholar 

  37. Kotenev, V.A., Kiselev, M.R., Zolotarevskii, V.I., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 488.

    Article  Google Scholar 

  38. Wei Jiang, Jiaping Qiu, Shaojun Yuan, Ying Wan, Jiemin Zhong, and Bin Liang, Prot. Met. Phys. Chem. Surf., 2015, vol. 51, p. 435.

    Article  Google Scholar 

  39. Rudnev, V.S., Wybornov, S., Lukiyanchuk, I.V., and Chernykh, I.V., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 191.

    Article  Google Scholar 

  40. Soliman, H. and Hamdy Abdel Salam, Prot. Met. Phys. Chem. Surf., 2015, vol. 51, p. 620.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kotenev.

Additional information

Original Russian Text © V.A. Kotenev, V.V. Vysotskii, A.A. Averin, A.Yu. Tsivadze, 2016, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2016, Vol. 52, No. 3, pp. 301–308.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotenev, V.A., Vysotskii, V.V., Averin, A.A. et al. Activation of metal oxidation over the zone of electrodiffusion. Prot Met Phys Chem Surf 52, 454–461 (2016). https://doi.org/10.1134/S207020511603014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207020511603014X

Navigation