Skip to main content
Log in

Formation of nanocomposites of platinum with nanotubular titanium dioxide

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Metal oxide nanocomposites of platinized titania nanotube arrays (Pt-TNT) have been formed via electrochemical anodization-precipitation. Initially, the vertically aligned amorphous TiO2 nanotube arrays (TNTs) were formed in accordance with potentiostatic electrochemical anodization of titanium with the use of 1 M H2SO4 + 0.3% HF electrolyte. Then, using the potentiostatic and pulse electrodeposition, precipitates of Pt on TNT were formed from 0.04 M solution of chloroplatinic acid (CPA). It has been shown with the use of SEM and Raman spectroscopy that, in order to prepare functional metal oxide Pt-TNT nanocomposites, pulse electrodeposition and subsequent annealing at 400°C are preferable, because they lead to TNTs that are homogeneously distributed along the surface and in bulk (with anatase structure) for platinized layers and conglomerates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghicov, A. and Schmuki, P., Chem. Commun., 2009, p. 2791.

    Google Scholar 

  2. Xiao, P., Garcia, B., Guo, Q., Liu, D.W., and Cao, G.Z., Electrochem. Commun., 2007, vol. 9, p. 2441.

    Article  Google Scholar 

  3. Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., and Grimes, C.A., Sol. Energy Mater. Sol. Cells, 2006, vol. 90, p. 2011.

    Article  Google Scholar 

  4. Zhukova, Yu.S., Pustov, Yu.A., and Filonov M.R., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, p. 315.

    Article  Google Scholar 

  5. Rudnev, V.S., Malyshev, I.V., Lukiyanchuk, I.V., and Kuryavyi V.G., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, p. 455.

    Article  Google Scholar 

  6. Nazarkovsky, M.A., Goncharuk, E.V., Pakhlov, E.M., Oranska, E.I., Skwarek, E., Skubiszewska-Ziba, J., Leboda, R., Janusz, W., and Gun’ko, V.M., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, p. 541.

    Article  Google Scholar 

  7. Macak, J., Sirotna, K., and Schmuki, P., Electrochim. Acta, 2005, vol. 50, p. 3679.

    Article  Google Scholar 

  8. Ghicov, A., Tsuchiya, H., Hahn, R., MacAk, J.M., Muñoz, A.G., and Schmuki, P., Electrochem. Commun., 2006, vol. 8, p. 528.

    Article  Google Scholar 

  9. Macak, J., Barczuk, P., Tsuchiya, H., Nowakowska, M.Z., Ghicov, A., Chojak, M., Bauer, S., Virtanen, S., Kulesza, P.J., and Schmuki, P., Electrochem. Commun., 2005, vol. 7, p. 1417.

    Article  Google Scholar 

  10. Hosseini, M.G., Sajjadi, S.A.S., and Momeni, M.M., Surf. Eng., 2007, vol. 23, p. 419.

    Article  Google Scholar 

  11. Xie, Y., Zhou, L., Huang, C., Huang, H., and Lu, J., Electrochim. Acta, 2008, vol. 53, p. 3643.

    Article  Google Scholar 

  12. Tsuchiya, H., Macak, J., Ghicov, A., and Schmuki, P., Corrosion Sci., 2007, vol. 49, p. 203.

    Article  Google Scholar 

  13. Macak, J., Tsuchiya, H., Taveira, L., Aldabergerova, S., and Schmuki, P., Angew. Chem. Int. Ed., 2005, vol. 44, p. 7463.

    Article  Google Scholar 

  14. Macak, J., Hildebrand, H., Marten-Jahns, U., and Schmuki, P., J. Electroanal. Chem., 2008, vol. 621, p. 254.

    Article  Google Scholar 

  15. Keller, F., Hunter, H., and Robinson D., J. Electrochem. Soc., 1953, vol. 100, p. 411.

    Article  Google Scholar 

  16. Varghese, O.K., Gong, D.W., Paulose, M., and Grimes, C.A., Adv. Mater., 2003, vol. 15, p. 624.

    Article  Google Scholar 

  17. Han, K.R., Kim, C.S., Kang, K.T., Koo, H.J., Kang, D.I., and Jingwen, H., Sens. Actuators, B, 2002, vol. 81, p. 182.

    Article  Google Scholar 

  18. Ruiz, A., Sakai, G., Cornet, A., Shimanoe, K., Morante, J.R., and Yamazoe, N., Sens. Actuators, B, 2003, vol. 93, p. 509.

    Article  Google Scholar 

  19. Moradi, F. and Dehghanian, C., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, p. 699.

    Article  Google Scholar 

  20. Kasian, O.I., Luk’yanenko, T.V., and Velichenko, A.B., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, p. 559.

    Article  Google Scholar 

  21. Pang, X., He, D., and Cai, Q., Sens. Actuators, B, 2009, vol. 137, p. 134.

    Article  Google Scholar 

  22. Huang, J.-Y., Zhang, K.-Q., and Lai, Y.-K., Int. J. Photoenergy, 2013, vol. 2013.

  23. Macak, J., Schmidt-Stein, F., and Schmuci, P., Electrochem. Commun., 2007. vol. 9, p. 1783.

    Article  Google Scholar 

  24. Paramasivam, I., Macak, J., and Schmuci, P., Electrochem. Commun., 2008, vol. 10, p. 71.

    Article  Google Scholar 

  25. Ye, M.D., Gong, J.J., and Lai, Y.K., J. Am. Chem. Soc., 2012, vol. 134, p. 15720.

    Article  Google Scholar 

  26. Lai, Y., Gong, J., and Lin, C., Int. J. Hydrogen Energy, 2012, vol. 37, p. 6438.

    Article  Google Scholar 

  27. Lin, C.H., Chao, J.H., and Liu, C.H., Langmuir, 2008, vol. 24, p. 9907.

    Article  Google Scholar 

  28. Yan, W.F., Shannon, M.M., and Pan, Z.W., J. Am. Chem. Soc., 2005, vol. 127, p. 10480.

    Article  Google Scholar 

  29. Andrievskii, R. A., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, p. 528.

    Article  Google Scholar 

  30. Khanmohammadi, M., Mizani, F., Barzegar Khaleghi, M., and Bagheri Garmarudi, A., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, p. 662.

    Article  Google Scholar 

  31. Mahshid, S., Li, C., Mahshid, S., Li, C., Mahshid, S.S., Askari, M., Dolati, A., Yang, L., Luoa, S., and Cai, Q., Analyst, 2011, vol. 136, p. 2322.

    Article  Google Scholar 

  32. Rettew, R., Allam, N., and Alamgir, F., Appl. Mater. Interfaces, 2011, vol. 3, p. 147.

    Article  Google Scholar 

  33. Farmer, V.C., The Infrared Spectra of Minerals, London: Mineral. Soc., 1975.

    Google Scholar 

  34. Lai, Y., Sun, L., Chen, Y., Zhuang, H., Lin, C., and Chin, J.W., J. Electrochem. Soc., 2006, vol. 153, P. D123.

    Article  Google Scholar 

  35. Bersani, D., Antonioli, G., Lottici, P., and Lopez, T., J. Non-Cryst. Solids, 1998, vol. 234, p. 175.

    Article  Google Scholar 

  36. Rettew, R., Allam, N., and Alamgir, F., Appl. Mater. Interfaces, 2011, vol. 3, p. 147.

    Article  Google Scholar 

  37. Regonini, D., Jaroenworaluck, A., Stevens, R., and Bowen, C., Surf. Interface Anal., 2010, vol. 42, p. 139.

    Article  Google Scholar 

  38. Ma, W., Lu, Z., and Zhang, M., Appl. Phys. A: Mater. Sci. Process., 1998, vol. 66, p. 621.

    Article  Google Scholar 

  39. Melendres, C.A., Narayanasamy, A., Maroni, V.A., and Siegel, R.W., J. Mater. Res., 1989, vol. 4, p. 1246.

    Article  Google Scholar 

  40. Cheng, H., Ma, J., Zhao, Z., and Qi, L., Chem. Mater., 1995, vol. 7, p. 663.

    Article  Google Scholar 

  41. Zhang, W.F., He, Y.L., Zhang, M.S., Yin, Z. and Chen, Q., J. Phys. D: Appl. Phys., 2000, vol. 33, p. 912.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Shcherbakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakov, A.I., Kasatkina, I.V., Vysotskii, V.V. et al. Formation of nanocomposites of platinum with nanotubular titanium dioxide. Prot Met Phys Chem Surf 50, 803–808 (2014). https://doi.org/10.1134/S2070205114060203

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205114060203

Keywords

Navigation