Skip to main content
Log in

Bifunctional Cobalt Catalysts for the Fischer–Tropsch Synthesis of Low-Pour-Point Diesel Fuel: From Development to Implementation: 2. Optimization of the Catalyst Component Composition

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The effect of the content of metallic (Co–Al2O3/SiO2 catalyst) and acidic components (ZSM-5 zeolite in H-form) on the properties of a bifunctional catalyst for the integrated synthesis of low-pour-point diesel fuel by the Fischer–Tropsch method has been studied. The catalysts in the form of a composite mixture with a binder (boehmite) have been characterized by XRD, BET, and TPR methods. The tests are conducted in a fixed-bed flow reactor at a pressure of 2.0 MPa, a temperature of 240°C, and a gas space velocity of 1000 h–1. The activity and selectivity of catalysts and the fractional and hydrocarbon compositions of products as a function of the ratio of components have been compared. It has been found that the synthesis productivity with respect to С5+ hydrocarbons and selectivity to products of the С11–C18 diesel fraction with a high content of isomeric products correlate with the ratio of metallic and acidic components in the catalyst composition. The catalyst recommended for use in diesel fuel production has a composition with a ratio of metallic and acidic components of 1.17.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

REFERENCES

  1. Dry, M.E., Catal. Today, 2002, vol. 71, nos. 3–4, pp. 227–241.https://doi.org/10.1016/S0920-5861(01)00453-9

  2. Khodakov, A.Y., Wei, C., and Fongarland, P., Chem. Rev., 2007, vol. 107, no. 5, pp. 1692–1744. https://doi.org/10.1021/cr050972v

    Article  CAS  PubMed  Google Scholar 

  3. De Klerk, A., Fischer-Tropsch Refining, Weinheim: Wiley-VCH, 2012.

    Google Scholar 

  4. Adeleke, A.A., Liu, X., Lu, X., Moyo, M., and Hildebrandt, D., Rev. Chem. Eng., 2020, vol. 36, no. 4, pp. 437–457. https://doi.org/10.1515/revce-2018-0012

    Article  CAS  Google Scholar 

  5. Zhu, C. and Bollas, G.M., Appl. Catal., B, 2018, vol. 235, pp. 92–102. https://doi.org/10.1016/j.apcatb.2018.04.063

    Article  CAS  Google Scholar 

  6. Sartipi, S., Parashar, K., Valero-Romero, M.J., Santos, V.P., van der Linden, B., Makkee, M., Kapteijn, F., and Gascon, J., J. Catal., 2013, vol. 305, pp. 179–190. https://doi.org/10.1016/j.jcat.2013.05.012

    Article  CAS  Google Scholar 

  7. Sartipi, S., Makkee, M., Kapteijn, F., and Gascon, J., Catal. Sci. Technol., 2014, vol. 4, no. 4, pp. 893–907. https://doi.org/10.1039/C3CY01021J

    Article  CAS  Google Scholar 

  8. Leckel, D., Fuel Process. Technol., 2011, vol. 92, no. 5, pp. 959–969. https://doi.org/10.1016/j.fuproc.2010.12.017

    Article  CAS  Google Scholar 

  9. Kinzul’, A.P., Khandarkhaev, S.V., Pisarenko, N.O., Buryukin, F.A., and Tverdokhlebov, V.P., Mir Nefteprod., 2012, no. 8, pp. 7–11.

  10. Maddi, B., Davidson, S., Job, H., Dagle, R., Guo, M., Gray, M., and Ramasamy, K.K., Catal. Lett., 2021, vol. 151, no. 2, pp. 526–537. https://doi.org/10.1007/s10562-020-03324-7

    Article  CAS  Google Scholar 

  11. Wang, Y., Yu, J., Qiao, J., Sun, Y., Jin, W., Zhang, H., and Ma, J., J. Energy Inst., 2020, vol. 93, no. 3, pp. 1187–1194. https://doi.org/10.1016/j.joei.2019.11.002

    Article  CAS  Google Scholar 

  12. Li, X., Chen, Y., Liu, S., Zhao, N., Jiang, X., Su, M., and Li, Z., Chem. Eng. J., 2021, vol. 416, article no. 129180. https://doi.org/10.1016/j.cej.2021.129180

    Article  CAS  Google Scholar 

  13. Xing, C., Li, M., Zhang, G., Noreen, A., Fu, Y., Yao, M., Lu, C., Gao, X., Yang, R., and Amoo, C.C., Fuel, 2021, vol. 285, article no. 119233. https://doi.org/10.1016/j.fuel.2020.119233

    Article  CAS  Google Scholar 

  14. Sadek, R., Chalupka, K.A., Mierczynski, P., Rynkowski, J., Millot, Y., Valentin, L., Casale, S., and Dzwigaj, S., Catal. Today, 2020, vol. 354, pp. 109–122. https://doi.org/10.1016/j.cattod.2019.05.004

    Article  CAS  Google Scholar 

  15. Přech, J., Strossi Pedrolo, D.R., Marcilio, N.R., Gu, B., Peregudova, A.S., Mazur, M., Ordomsky, V.V., Valtchev, V., and Khodakov, A.Y., ACS Catal., 2020, vol. 10, no. 4, pp. 2544–2555. https://doi.org/10.1021/acscatal.9b04421

    Article  CAS  Google Scholar 

  16. Sapkota, K.P., Lee, I., Hanif, M.A., Islam, M.A., and Hahn, J.R., Catalysts, 2019, vol. 9, no. 6, article no. 498. https://doi.org/10.3390/catal9060498

    Article  Google Scholar 

  17. Li, J., He, Y., Tan, L., Zhang, P., Peng, X., Oruganti, A., Yang, G., Abe, H., Wang, Y., and Tsubaki, N., Nat. Catal., 2018, vol. 1, no. 10, pp. 787–793. https://doi.org/10.1038/s41929-018-0144-z

    Article  CAS  Google Scholar 

  18. Martínez-Vargas, D.X., Sandoval-Rangel, L., Campuzano-Calderon, O., Romero-Flores, M., Lozano, F.J., Nigam, K.D.P., Mendoza, A., and Montesinos-Castellanos, A., Ind. Eng. Chem. Res., vol. 58, no. 35, pp. 15872–15901. https://doi.org/10.1021/acs.iecr.9b01141

  19. Asalieva, E.Yu., Kul’chakovskaya, E.V., Sineva, L.V., and Mordkovich, V.Z., Pet. Chem., 2020, vol. 60, no. 1, pp. 69–74. https://doi.org/10.1134/S0965544120010028

    Article  CAS  Google Scholar 

  20. Sineva, L.V., Asalieva, E.Yu., and Mordkovich,V.Z., Russ. Chem. Rev., 2015, vol. 84, no. 11, pp. 1176–1189. .https://doi.org/10.1070/RCR4464

    Article  CAS  Google Scholar 

  21. Akhmedov, V.M. and Al-Khowaiter, S.H., Catal. Rev., 2007, vol. 49, no. 1, pp. 33–139. https://doi.org/10.1080/01614940601128427

    Article  CAS  Google Scholar 

  22. Yakovenko, R.E., Savost’yanov, A.P., Narochnyi, G.B., Soromotin, V.N., Zubkov, I.N., Papeta, O.P., Svetogorov, R.D., and Mitchenko, S.A., Catal. Sci. Technol., 2020, vol. 10, no. 22, pp. 7613–7629. https://doi.org/10.1039/D0CY00975J

    Article  CAS  Google Scholar 

  23. Yakovenko, R.E., Zubkov, I.N., Savost’yanov, A.P., Soromotin, V.N., Krasnyakova, T.V., Papeta, O.P., and Mitchenko, S.A., Kinet. Catal., 2021, vol. 62, no. 1, pp. 172–180. https://doi.org/10.1134/S0023158421010122

    Article  CAS  Google Scholar 

  24. Narochnyi, G.B., Yakovenko, R.E., Savost’yanov, A.P., and Bakun, V.G., Catal. Ind., 2016, vol. 8, no. 2, pp. 139–144. https://doi.org/10.1134/S2070050416020070

    Article  Google Scholar 

  25. Yakovenko, R.E., Zubkov, I.N., Narochniy, G.B., Papeta, O.P., Denisov, O.D., and Savost’yanov, A.P., Kinet. Catal., 2020, vol. 61, no. 2, pp. 310–317. https://doi.org/10.1134/S0023158420020111

    Article  CAS  Google Scholar 

  26. Murzin, D.Yu., Kinet. Catal., 2020, vol. 61, no. 1, pp. 80–92. https://doi.org/10.1134/S0023158420010073

    Article  CAS  Google Scholar 

  27. Yakovenko, R.E., Zubkov, I.N., Bakun, V.G., Agliullin, M.R., Saliev, A.N., and Savost’yanov, A.P., Catal. Ind., 2021, vol. 13, no. 3, pp. 230–238. https://doi.org/10.1134/S2070050421030120

    Article  Google Scholar 

  28. International Center for Diffraction Data (ICDD), PDF-2 Release 2012. https://www.icdd.com. Cited September 16, 2023.

  29. The Rietveld Method, Young, R.A., Ed., Oxford: Oxford University Press, 1993.

    Google Scholar 

  30. Schanke, D., Vada, S., Blekkan, E.A., Hilmen, A.M., Hoff, A., and Holmen, A., J. Catal., 1995, vol. 156, no. 1, pp. 85–95. https://doi.org/10.1006/jcat.1995.1234

    Article  CAS  Google Scholar 

  31. Xu, D., Li, W., Duan, H., Ge, Q., and Xu, H., Catal. Lett., 2005, vol. 102, no. 3, pp. 229–235. https://doi.org/10.1007/s10562-005-5861-7

    Article  CAS  Google Scholar 

  32. Sasol Official Website. www.sasolgermany.de/fileadmin/doc/alumina/Neu_2017/0372.SAS-BR Inorganics_Pural_Catapal_WEB.pdf. Cited June 2, 2022.

  33. Savost'yanov, A.P., Yakovenko, R.E., Sulima, S.I., Bakun, V.G., Narochnyi, G.B., Chernyshev, V.M., and Mitchenko, S.A., Catal. Today, 2017, vol. 279, part 1, pp. 107–114. https://doi.org/10.1016/j.cattod.2016.02.037

    Article  CAS  Google Scholar 

  34. Sulima, S.I., Bakun, V.G., Yakovenko, R.E., Shabel’skaya, N.P., Saliev, A.N., Narochnyi, G.B., and Savost’yanov, A.P., Kinet. Catal., 2018, vo. 59, no. 2, pp. 218–228. https://doi.org/10.1134/S0023158418020131

    Article  CAS  Google Scholar 

  35. Conte, M., Xu, B., Davies, T.E., Bartley, J.K., Carley, A.F., Taylor, S.H., Khalid, K., and Hutchings, G.J., Microporous Mesoporous Mater., 2012, vol. 164, pp. 207–213. https://doi.org/10.1016/j.micromeso.2012.05.001

    Article  CAS  Google Scholar 

  36. Shavaleev, D.A., Travkina, O.S., Alekhina, I.E., Ershtein, A.S., Basimova, R.A., and Pavlov, M.L., Vestn. Bashk. Univ., 2015, vol. 20, no. 1, pp. 58–65.

    Google Scholar 

  37. Chernavskii, P.A., Zh. Fiz. Khim., 2003, vol. 77, no. 4, pp. 636–640.

    CAS  Google Scholar 

  38. Bulavchenko, O.A., Cherepanova, S.V., Malakhov, V.V., Dovlitova, L.C., Ishchenko, A.V., and Tsybulya, S.V., Kinet. Catal., 2009, vol. 50, no. 2, pp. 192–198. https://doi.org/10.1134/S0023158409020086

    Article  CAS  Google Scholar 

  39. Pardo-Tarifa, F., Cabrera, S., Sanchez-Dominguez, M., and Boutonnet, M., Int. J. Hydrogen Energy, 2017, vol. 42, no. 15, pp. 9754–9765. https://doi.org/10.1016/j.ijhydene.2017.01.056

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed within the framework of the strategic project “Scientific and Innovation “Contract R&D Center” Cluster” of Platov South-Russian State Polytechnic University Development Program during the implementation of the program of strategic academic leadership “Priority-2030” using the equipment of the “Nanotechnologies” Center for collective use of Platov South-Russian State Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Yakovenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovenko, R.E., Bakun, V.G., Zubkov, I.N. et al. Bifunctional Cobalt Catalysts for the Fischer–Tropsch Synthesis of Low-Pour-Point Diesel Fuel: From Development to Implementation: 2. Optimization of the Catalyst Component Composition. Catal. Ind. 15, 357–366 (2023). https://doi.org/10.1134/S2070050423040128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050423040128

Keywords:

Navigation