Skip to main content
Log in

Synthesis of Glycerol Carbonate from Glycerol and Dimethyl Carbonate Using Strongly Basic Anion-Exchange Styrene–Divinylbenzene Dowex Resins

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The synthesis of glycerol carbonate from glycerol and dimethyl carbonate when using strongly basic styrene–divinylbenzene anion-exchange resins Dowex 1 × 2, Dowex 1 × 4, and Dowex 1 × 8 in the OH-form is studied. The resins are characterized by different degrees of crosslinking of their polystyrene matrices (the contents of divinylbenzene are 2, 4, and 8 wt. %, respectively). Synthesis is performed at 90–105°C, and the molar ratio of dimethyl carbonate to glycerol is 2 : 1. The yield of glycerol carbonate is shown to depend on the degree of crosslinking of the anion-exchange resin, since it falls as the degree of crosslinking rises. The highest degree of the conversion of glycerol (95%) and its selectivity toward glycerol carbonate (45.5%) are observed when using Dowex 1 × 2 and the reaction proceeds at 105°C for a period of 5 h. Advantages of considered systems over other anion- and cation-exchange resins proposed in the literature are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Ochoa-Gómez, J.R., Gómez-Jiménez-Aberasturi, O., Ramírez-López, C., and Belsué, M., Org. Process Res. Dev., 2012, vol. 16, pp. 389–399.

    Article  Google Scholar 

  2. Transparency market research. Glycerol carbonate market. www.transparencymarketresearch.com/glycerol-carbonate-market.html. Cited April 19, 2022.

  3. Meng, X., Wan, J., Liu, Y., Wang, X., Zhang, J., Wang, F., Zhang, J., Zheng, F., Kan, J., and Wu, G., Chem. Ind. Eng. Prog., 2020, vol. 39, pp. 3739–3749.

    Google Scholar 

  4. Teng, W.K., Ngoh, G.C., Yusoff, R., and Aroua, M.K., Energy Convers. Manage., 2014, vol. 88, pp. 484–497.

    Article  CAS  Google Scholar 

  5. Wang, X., Zhang, P., Cui, P., Cheng, W., and Zhang, S., Chin. J. Chem. Eng., 2017, vol. 25, pp. 1182–1186.

    Article  CAS  Google Scholar 

  6. Nogueira, D.O., de Souza, SP., Leão, R.A.C., Miranda, L.S.M., and de Souza, R.O.M.A., RSC Adv., 2015, vol. 5, pp. 20945–20950.

    Article  CAS  Google Scholar 

  7. Ochoa-Gómez, J.R., Gómez-Jiménez-Aberasturi, O., Maestro-Madurga, B., Pesquera-Rodríguez, A., Ramírez-López, C., Lorenzo-Ibarreta, L., Torrecilla-Soria, J., and Villarán-Velasco, M.C., Appl. Catal., A, 2009, vol. 366, pp. 315–324.

  8. Bai, R., Wang, Y., Wang, S., Mei, F., Li, T., and Li, G., Fuel Process. Technol., 2013, vol. 106, pp. 209–214.

    Article  CAS  Google Scholar 

  9. Rokicki, G., Rakoczy, P., Parzuchowski, P., and Sobiecki, M., Green Chem., 2005, vol. 7, pp. 529–539.

    Article  CAS  Google Scholar 

  10. Li, J. and Wang, T., J. Chem. Thermodyn., 2011, vol. 43, pp. 731–736.

    Article  CAS  Google Scholar 

  11. Malyaadri, M., Jagadeeswaraiah, K., Sai Prasad, P.S., and Lingaiah, N., Appl. Catal., A, 2011, vol. 401, pp. 153–157.

  12. Algoufi, Y.T., Akpan, U.G., Kabir, G., Asif, M., and Hameed, B.H., Energy Convers. Manage, 2017, vol. 138, pp. 183–1929.

    Article  CAS  Google Scholar 

  13. Kumar, A., Iwatani, K., Nishimura, S., Takagaki, A., and Ebitani, K., Catal. Today, 2012, vol. 185, pp. 241–246.

    Article  CAS  Google Scholar 

  14. Takagaki, A., Iwatani, K., Nishimura, S., and Ebitani, K., Green Chem., 2010, vol. 12, pp. 578–581.

    Article  CAS  Google Scholar 

  15. Bai, R., Wang, S., Mei, F., Li, T., and Li, G., J. Ind. Eng. Chem., 2011, vol. 17, pp. 777–781.

    Article  CAS  Google Scholar 

  16. Jarvis, I., Totland, M.M., and Jarvis, K.E., Analyst, 1997, vol. 122, pp. 19–26.

    Article  CAS  Google Scholar 

  17. Kaya, A., Kud, H., Shrahashi, J., and Suzuki, S., J. Nucl. Sci. Technol., 1967, vol. 4, pp. 289–292.

    Article  CAS  Google Scholar 

  18. Stoliker, D.L., Kaviani, N., Kent, D.B., and Davis, J.A., Geochem. Trans., 2013, vol. 14, pp. 1–9.

    Article  CAS  Google Scholar 

  19. Hatch, J.A. and Dillon, H.B., Ind. Eng. Chem. Process Des. Dev., 1963, vol. 2, pp. 253–263.

    Article  CAS  Google Scholar 

  20. Suh, J. and Park, C., Bull. Korean Chem. Soc., 1991, vol. 12, pp. 113–115.

    CAS  Google Scholar 

  21. Marrodan, C.M., Beboraerti, D., Liguoria, F., and Barbaro, P., Catal. Sci. Technol., 2012, vol. 2, pp. 2279–2290.

    Article  CAS  Google Scholar 

  22. DOWEX™ fine mesh spherical ion exchange resins. https://www.lenntech.com/Data-sheets/Dowex-1x8-100-200-L.pdf. Cited April 18, 2022.

  23. Nesterov, Yu.V., Ionity i ionoobmen. Sorbtsionnaya tekhnologiya pri dobyche urana i drugikh metallov metodom podzemnogo vyshchelachivaniya (Ionites and Ion Exchange. Sorption Technology in the Production of Uranium and Other Metals by Underground Leaching), Moscow: Vneshtorgizdat, 2007.

  24. Abdullaev, M.G., Vestn. Dagestan. Gos. Univ., Estestv. Nauki, 2017, vol. 32, no. 1, pp. 54–60.

    Google Scholar 

  25. Tsuru, T., Sasaki, A., Kanezashi, M., and Yoshioka, T., AIChE J., 2011, vol. 57, pp. 2079–2089.

    Article  CAS  Google Scholar 

  26. Ngai, K.L., Lunkenheimer, P., and Loidl, A., Phys. Chem. Chem. Phys., 2020, vol. 22, pp. 507–511.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the RF Ministry of Higher Education and Science as part of a State Task for the Boreskov Institute of Catalysis, project no. AAAA-A21-121011390055-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shvydko.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvydko, A.V., Prihod’ko, S.A. & Timofeeva, M.N. Synthesis of Glycerol Carbonate from Glycerol and Dimethyl Carbonate Using Strongly Basic Anion-Exchange Styrene–Divinylbenzene Dowex Resins. Catal. Ind. 14, 181–188 (2022). https://doi.org/10.1134/S2070050422020088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050422020088

Keywords:

Navigation