Skip to main content
Log in

Aluminium Oxide Catalysts and Supports Synthesized by Thermal Activation Technology

  • GENERAL PROBLEMS OF CATALYSIS
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

A study is performed of the main ways of preparing aluminum oxides; the advantages of products of the thermal activation of hydrargillite (gibbsite) for preparing catalysts, supports, and sorbents; factors that influence the products of thermal activation and aluminum oxides according to the technology of thermal activation; and examples of effectively using products of the centrifugal thermal activation of hydrargillite to prepare catalysts, supports, and sorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Ivanova, A.S., Kinet. Catal., 2012, vol. 53, no. 4, pp. 425–439.

    Article  CAS  Google Scholar 

  2. Stiles, A.B., Catalyst Support and Supported Catalysts: Theoretical and Applied Concepts, Boston: Butterworths, 1987

    Google Scholar 

  3. Physical and Chemical Aspects of Adsorbents and Catalysts, Linsen, B.G., Ed., London: Academic Press, 1970.

    Google Scholar 

  4. Spravochnik: Fizicheskie velichiny (Handbook: Physical Quantities), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.

  5. Wefers, K. and Misra, C., Oxides and Hydroxides of Aluminum: Alcoa Technical Paper no. 9, Pittsburgh: Alcoa center, 1987.

  6. Leonard, A., Cauwelaert, F., and Fripiat, J., J. Phys. Chem., 1967, vol. 71, no. 3, pp. 695–708.

    Article  CAS  Google Scholar 

  7. Sanfilippo, D. and Miracca, I., Catal. Today, 2006, vol. 111, nos. 1–2, pp. 133–139.

  8. Weckhuysen, B. and Schoonheydt, R., Catal. Today, 1999, vol. 51, no. 2, pp.223–232.

    Article  CAS  Google Scholar 

  9. Sadrameli, S.M., Fuel, 2016, vol. 173, pp. 285–297.

    Article  CAS  Google Scholar 

  10. Halliche, D., Bouarab, R., Cherifi, O., and Bettahar, M.M., Catal. Today, 1996, vol. 29, pp. 373–377.

    Article  CAS  Google Scholar 

  11. Song, C., Catal. Today, 2003, vol. 86, pp. 211–263.

    Article  CAS  Google Scholar 

  12. Klimov, O.V., Leonova, K.A., Koryabkina, G.I., Gerasimov, E.Yu., and Noskov, A.S., Catal. Today, 2014, vols. 220–222, pp. 66–77.

  13. RF Patent 2278730, 2006.

  14. Zotov, R.A., Development of Alumina Based Catalysts for the process of olefin synthesis from alcohols, Cand. Sci. (Chem.) Dissertation, Novosibirsk: Boreskov Inst. Catal., 2011. www.dissercat.com/content/razrabotka-katalizatorov-na-osnove-oksida-alyuminiya-dlya-protsessa-polucheniya-olefinov-iz. Cited August 30, 2021.

  15. Taylor, K.C., Catal. Rev. Sci. Eng., 1993, vol. 35, no. 4, pp. 457–481.

    Article  CAS  Google Scholar 

  16. Satterfield, C.N., Heterogeneous Catalysis in Industrial Practice, New York: McGraw-Hill, 1980.

    Google Scholar 

  17. Krylov, O.V., Geterogennyi kataliz. Uchebnoe posobie dlya vuzov (Heterogeneous Catalysis. Textbook for Universities), Moscow: Akademkniga, 2004.

  18. Isupova, L.A. and Ivanova, Yu.A., Kinet. Catal., 2019, vol. 60, no. 6, pp. 744–760. https://doi.org/10.1134/S0023158419060041

    Article  CAS  Google Scholar 

  19. Fedorova, A.V., Catalytic purification of gaseous emissions from nitrogen(II) oxide, Cand. Sci. (Eng.) Dissertation, Saint-Petersburg: Saint-Petersburg State Technol. Inst., 2011.

  20. Ismagilov, Z.R., Shkrabina, R.A., and Koryabkina, N.A., Alyumooksidnye nositeli: proizvodstvo, svoistva i primenenie v kataliticheskikh protsessakh okruzhayushchei sredy (Alumina Supports: Production, Properties, and Application in Environmental Catalytic Processes), Novosibirsk: GPNTB SO RAN, 1988.

  21. Pinaeva, L.G., Dovlitova, L.S., and Isupova, L.A., Kinet. Catal., 2017, vol. 58, no. 2, pp. 167–178. https://doi.org/10.1134/S002315841702010

    Article  CAS  Google Scholar 

  22. Popova, N.M., Katalizatory ochistki vykhlopnykh gazov avtotransporta (Catalysts for the Purification of Exhaust Gases of Automotive Transport), Alma-Ata: Nauka, 1987.

  23. Yakovleva, I.S., Banzaraktsaeva, S.P., Ovchinnikova, E.V., Chumachenko, V.A., and Isupova, L.A., Catal. Ind., 2016, vol. 8, no. 2, pp. 152–167. https://doi.org/10.1134/S2070050416020148

    Article  Google Scholar 

  24. Zhang, M. and Yu, Y., Ind. Eng. Chem. Res., 2013, vol. 52, no. 28, pp. 9505–9514.

    Article  CAS  Google Scholar 

  25. Fan, D., Dai, D., and Wu, H., Materials, 2012, vol. 6, no. 1, pp. 101–115. https://doi.org/10.3390/ma6010101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grunval’d, V.R., Tekhnologiya gazovoi sery (Technology of Gaseous Sulfur), Moscow: Khimiya, 1992.

  27. Zolotovskii, B.P., Buyanov, R.A, Bukhtiyarova, G.A., Taraban, E.A., Yurin, V.I., Grunval’d, V.R., and Saifullin, R.A., Zh. Prikl. Khim., 1997, vol. 70, no. 2, pp. 299–305.

    CAS  Google Scholar 

  28. Paukshtis, E.A., Infrakrasnaya spektroskopiya v geterogennom kislotno-osnovnom katalize (Infrared Spectroscopy in Heterogeneous Acid-Base Catalysis), Novosibirsk: Nauka, 1992.

  29. Fleming, H.L., Stud. Surf. Sci. Catal., 1999, vol. 120, pp. 561–585.

    Article  Google Scholar 

  30. Kel’tsev, N.V., Osnovy adsorbtsionnoi tekhniki (Fundamentals of Adsorption Technique), Moscow: Khimiya, 1984.

  31. Dabrowski, A., Adv. Colloid Interface Sci., 2001, vol. 93, pp. 135–224.

    Article  CAS  Google Scholar 

  32. Dzis’ko, V.A., Karnaukhov, A.P., and Tarasova, D.V., Fiziko-khimicheskie osnovy sinteza okisnykh katalizatorov (Physicochemical Foundations for the Synthesis of Oxide Catalysts), Novosibirsk: Nauka, 1978.

    Google Scholar 

  33. Dzis’ko, V.A., Kinet. Katal., 1979, vol. 20, no. 6, pp. 1526–1532.

    Google Scholar 

  34. Lamberov, A.A., Levin, O.V., Egorova, S.R., Evstyagin, D.A., and Aptikasheva, A.G., Russ. J. Appl. Chem., 2003, vol. 76, no. 1, pp. 48–54.

    Article  CAS  Google Scholar 

  35. Vorob’ev, Yu.K., Shkrabina, P.A., Moroz, E.M., Fenelonov, V.B., Zagrafskaya, R.V., Kambarova, T.D., and Levitskii, E.A., Kinet. Katal., 1981, vol. 22, no. 6, pp. 1595–1602.

    Google Scholar 

  36. Irisova, K.N., Kostromina, T.S., and Nefedov, B.K., Nositeli katalizatorov gidroochistki na osnove aktivnoi okisi alyuminiya (Active Alumina Based Catalyst Supports), Moscow: TsNIITEneftekhim, 1983.

  37. Vasserman, I.M., Khimicheskoe osazhdenie iz rastvorov (Chemical Precipitation from Solutions), Leningrad: Khimiya, 1980.

  38. Ivanova, A.S., Tarasova, T.V., Gazhur, L.K., Klochkov, N.V., Litvak, G.S., Moroz, E.M., and Kryukova, G.K., Khim. Prom-st’, 1990, no. 3, pp. 163–165.

  39. Tarasova, T.V., Gazhur, L.K, Ivanova, A.S.,, and Le Tkhi Mai Khyong, in Trudy GIAP: Issledovanie i razrabotka syr’ya dlya prigotovleniya katalizatorov (GIAP Proceedings: Study and Development of Catalyst Preparation Feedstocks), Moscow: ONTI GIAP, 1990, p. 7.

  40. Shkrabina, R.A., Study of pulsed thermal gibbsite decomposition products and synthesis of different aluminum hydroxides and oxides from them, Cand. Sci. (Chem.) Dissertation, Novosibirsk: Boreskov Inst. Catal., 1982.

  41. Lamberov, A.A., Development of catalysts for organic synthesis processes by using a new active alumina synthesis method, Doctoral (Eng.) Dissertation, Kazan: Kazan. State Technol. Univ., 1999.

  42. Ziegler, K., Brennst.-Chem., 1954, vol. 35, pp. 321–325.

    CAS  Google Scholar 

  43. Mole, T. and Jeffery, E.A., Organoaluminum Compounds, New York: Elsevier, 1972.

    Google Scholar 

  44. Albert, F., Heterogene Katalyse: Materials valley Workshop, Hanau am Main, 2009.

  45. Flash Reaction Processes: Proceedings of the NATO Advanced Research Workshop on Flash Reaction Processes, Davies, T.W., Ed., Netherlands, Dordrecht: Kluwer Academic Publishers, 1995.

    Google Scholar 

  46. US Patent 2915365, 1959.

  47. Rožić, L., Novaković, T., Jovanović, N., Terlecki-Baričevi, A., and Grbavčić, Z., J. Serb. Chem. Soc., 2001, vol. 66, no. 4, pp. 273–280.

    Article  Google Scholar 

  48. Danilevich, V.V., Lakhmostov, V.S., Zakharov, V.P., Tanashev, Yu.Yu., Sokolov, D.N., Isupova, L.A., and Parmon, V.N., Katal. Prom-sti., 2016, vol. 16, no. 1, pp. 13–28.

    CAS  Google Scholar 

  49. Danilevich, V., Isupova, L., Tanashev, Y., and Parmon, V., Cleaner Eng. Technol., 2021, vol. 3. https://doi.org/10.1016/j.clet.2021.100118

  50. Buyanov, R.A., Krivoruchko, O.P., and Zolotovskii, B.P., Izv. Sib. Otd. Akad. Nauk. SSSR, Ser. Khim. Nauk, 1986, no. 4, pp. 39–45.

  51. Zolotovskii, B.P. and Buyanov, R.A., in Nauchnye osnovy prigotovleniya i tekhnologii katalizatorov: sbornik nauchnykh trudov (Fundamentals of Catalyst Technology and Preparation: Collection of Research Papers), Novosibirsk, 1990, pp. 108–118.

  52. Zolotovskii, B.P., Fundamentals of the mechanochemical and thermochemical activation of crystalline hydroxides in the preparation of supports and catalysts, Doctoral (Chem.) Dissertation, Novosibirsk: Boreskov Inst. Catal., 1992.

  53. Isupova, L.A., Tanashev, Yu.Yu., Kharina, I.V., Moroz, E.M., Litvak, G.S., Boldyreva, N.N., Paukshtis, E.A., Burgina, E.B., Budneva, A.A., Shmakov, A.N., Rudina, N.A., Kruglyakov, V.Yu., and Parmon, V.N., Chem. Eng. J., 2005, vol. 107, nos. 1–3, pp. 163–169.

  54. Tanashev, Yu.Yu., Moroz, E.M., Isupova, L.A., Ivanova, A.S., Litvak, G.S., Amosov, Yu.I., Rudina, N.A., Shmakov, A.N., Stepanov, A.G., Kharina, I.V., Kul’ko, E.V., Danilevich, V.V., Balashiov, V.A., Kruglyakov, V.Yu., Zolotarskii, I.A., and Parmon, V.N., Kinet. Catal., 2007, vol. 48, no. 1, pp. 153–161.

    Article  CAS  Google Scholar 

  55. Danilevich, V.V., Process for the synthesis of active aluminum hydroxide by the fast thermal treatment of hydrargillite in a centrifugal drum-type reactor, Cand Sci. (Eng.) Dissertation, Tomsk: Nat. Res. Tomsk. Polytechn. Univ., 2017.

  56. Tanev, P.T. and Vlaev, L.T., Catal. Lett., 1993, no. 19, no. 4, pp. 351–360.

  57. Zhu, B., Fang, B., and Li, X., Ceram. Int., 2010, vol. 36, pp. 2493–2498.

    Article  CAS  Google Scholar 

  58. Zeng, W., Zhou, H., Chen, Q., and Chen, X., Trans. NFsoc, 1993, vol. 3, no. 2, pp. 41–44.

    CAS  Google Scholar 

  59. Zolotovskii, B.P., Loiko, V.E., Mastikhin, V.M., Litvak, G.S., Plyasova, L.M., and Buyanov, R.A., Kinet. Katal., 1990, vol. 31, no. 4, pp. 1014–1017.

    CAS  Google Scholar 

  60. Kul’ko, E.V., Ivanova, A.S., Kruglyakov, V.Yu., Moroz, E.M., Shefer, K.I., Litvak, G.S., Kryukova, G.N., Tanashev, Yu.Yu., and Parmon, V.N., Kinet. Catal., 2007, vol. 48, no. 2, pp. 316–326.

    Article  Google Scholar 

  61. Pakhomov, N.A., Parakhin, O.A., Nemykina, E.I., Danilevich, V.V., Chernov, M.P., and Pecherichenko, V.A., Catal. Ind., 2012, vol. 4, no. 4, pp. 298–307.

    Article  Google Scholar 

  62. Nemykina, E.I., Pakhomov, N.A., Danilevich, V.V., Rogov, V.A., Zaikovskii, V.I., Larina, T.V., and Mol-chanov, V.V., Kinet. Catal., 2010, vol. 51, no. 6, pp. 898–906.

    Article  CAS  Google Scholar 

  63. Pakhomov, N.A., Molchanov, V.V., Zolotovskii, B.P., Nadtochii, V.I., Isupova, L.A., Tikhov, S.F., Kashkin, V.N., Kharina, I.V., Balashov, V.A., Tanashev, Yu.Yu., and Parakhin, O.A., Catal. Ind., 2010, vol. 2, no. 2, pp. 144–150. https://doi.org/10.1134/S2070050410020091

    Article  Google Scholar 

  64. RF Patent 2322290, 2008.

  65. RF Patent 2237019, 2004.

  66. RF Patent 2335457, 2008.

  67. RF Patent 2237018, 2004.

  68. RF Patent 2234460, 2004.

  69. RF Patent 2390495, 2010.

  70. RF Patent 2455232, 2012.

  71. RF Patent 2527259, 2014.

  72. Kruglyakov, V.Yu., Glazyrin, A.V., and Isupova, L.A., Katal. Prom-sti, 2019, vol. 19, no. 2, pp. 132–141.

    CAS  Google Scholar 

  73. Klassen, P.V. and Grishaev, I.G., Osnovy tekhniki granulirovaniya (Fundamentals of Granulation Technique), Moscow: Khimiya, 1992.

  74. US Patent 4273735, 1981.

  75. Maryshev, V.B. and Krasii, B.V., Pet. Chem., 2007, vol. 47, no. 4, pp. 262–267.

    Article  Google Scholar 

  76. US Patent 0002698878.

  77. Nichiporenko, S.P., Fiziko-khimicheskaya mekhanika dispersnykh struktur v tekhnologii stroitel’noi keramiki (Physicochemical Mechanics of Disperse Structures and Building Ceramic Technology), Kiev: Naukova dumka, 1968.

  78. Prokof'ev, V.Yu., Il’in, A.P., Shirokov, Yu.G., and Yurchenko, E.N., Zh. Prikl. Khim., 1995, vol. 68, no. 4, pp. 613–618.

    CAS  Google Scholar 

  79. Kruglyakov, V.Yu., Sutormina, E.F., Kulikovskaya, N.A., Rudina, N.A., and Isupova, L.A., Glass Ceram., 2018, nos. 11–12, pp. 393–398. https://doi.org/10.1007/s10717-018-0002-0

  80. Kruglyakov, V.Yu., Isupova, L.A., Glazyrin, A.V., Danilevich, V.V., and Kharina, I.V., Katal. Prom-sti, 2016, vol. 16, no. 1, pp. 6–12. https://doi.org/10.18412/1816-0387-2016-1-6-12

    Article  CAS  Google Scholar 

  81. Zolotarskii, I.A., Voennov, L.I., Zudilina, L.Yu., Isupova, L.A., Zotov, R.A., Medvedev, D.A., Stepanov, D.A., Livanova, A.V., Meshcheryakov, E.P., and Kurzina, Catal. Ind., 2018, vol. 10, no. 1, pp. 49–56. https://doi.org/10.1134/S2070050418010129

    Article  Google Scholar 

  82. Vlasov, E.A. and Levitskii, E.A., Kinet. Katal., 1975, vol. 16, no. 1, pp. 225–229.

    CAS  Google Scholar 

  83. Zotov, R., Meshcheryakov, E., Livanova, A., Minakova, T., Magaev, O., Isupova, L., and Kurzina, I., Materials, 2018, vol. 11, no. 1, p. 132. https://doi.org/10.3390/ma11010132

    Article  CAS  PubMed Central  Google Scholar 

  84. Isupova, L.A., Danilova, I.G., Danilevich, V.V., and Ushakov, V.A., Russ. J. Appl. Chem., 2017, vol. 90, no. 11, pp. 1810–1818. https://doi.org/10.1134/S1070427217110131

    Article  CAS  Google Scholar 

  85. Zotov, R.A., Glazyrin, A.A., Danilevich, V.V., Kharina, I.V., Zyuzin, D.A., Volodin, A.M., and Isupova, L.A., Kinet. Catal., 2012, vol. 53, no. 5, pp. 570–576.

    Article  CAS  Google Scholar 

  86. Kul’ko, E.V., Ivanova, A.S., Budneva, A.A., and Paukshtis, E.A., React. Kinet. Catal. Lett., 2006, vol. 88, no. 2, pp. 381–390.

    Article  Google Scholar 

  87. Danilevich, V.V., Isupova, L.A., Danilova, I.G., Zotov, R.A., and Ushakov, V.A., Russ. J. Appl. Chem., 2016, vol. 89, no. 3, pp. 341–351.

    Article  Google Scholar 

  88. Danilevich, V.V., Isupova, L.A., Paukshtis, E.A., and Ushakov, V.A., Kinet. Catal., 2014, vol. 55, no. 3, pp. 372–379.

    Article  CAS  Google Scholar 

  89. Reshetnikov, S.I., Livanova, A.V., Meshcheryakov, E.P., Kurzina, I.A., and Isupova, L.A., Russ. J. Appl. Chem., 2017, vol. 90, no. 11, pp. 1760–1765.

    Article  CAS  Google Scholar 

  90. US Patent 4447314, 1984.

  91. US Patent 4489173, 1984.

  92. Banzaraktsaeva, S.P., Ovchinnikova, E.V., Isupova, L.A., and Chumachenko, V.A., Russ. J. Appl. Chem., 2017, vol. 90, no. 2, pp. 169–178. https://doi.org/10.1134/S1070427217020021

    Article  CAS  Google Scholar 

  93. Kruglyakov, V.Yu., Glazyrin, A.V., Mescheryakov, E.P., Kurzina, I.A., and Isupova, L.A., Catal. Ind., 2020, vol. 12, no. 3, pp. 169–175. https://doi.org/10.1134/S2070050420030083

    Article  Google Scholar 

  94. Meshcheryakov, E., Kozlov, M., Reshetnikov, S., Isupova, L., Livanova, A., and Kurzina, I., Appl. Sci., 2020, vol. 10, no. 15, p. 5320. https://doi.org/10.3390/app10155320

    Article  CAS  Google Scholar 

  95. Zotov, R.A., Isupova, L.A., Danilevich, V.V., Babina, A.A., Sinel’nikov, A.N., Meshcheryakov, E.P., and Kurzina, I.A., Catal. Ind., 2017, vol. 9, no. 2, pp. 91–98. https://doi.org/10.1134/S207005041702012X

    Article  Google Scholar 

  96. RF Patent 2 609 263, 2017.

  97. Ovchinnikova, E.V., Isupova, L.A., Danilova, I.G., Danilevich, V.V., and Chumachenko, V.A., Russ. J. Appl. Chem., 2016, vol. 89, no. 5, pp. 683–689. https://doi.org/10.1134/S1070427216050013

    Article  CAS  Google Scholar 

  98. Ovchinnikova, E.V., Banzaraktsaeva, S.P., Kalugina, E.A., and Chumachenko, V.A., Catal. Ind., 2019, vol. 11, no. 1, pp. 80–86. https://doi.org/10.1134/S2070050419010082

    Article  Google Scholar 

  99. Nadeina, K.A., Danilevich, V.V., Kazakov, M.O., Romanova, T.S., Gabrienko, A.A., Danilova, I.G., Pakharukova, V.A., Nikolaeva, O.A., Gerasimov, E.Y., Prosvirin, I.P., Kondrashev, D.O., Kleimenov, A.V., Klimov, O.V., and Noskov, A.S., Appl. Catal., B, 2021, vol. 280. https://doi.org/10.1016/j.apcatb.2020.119415

  100. Stolyarova, E.A., Danilevich, V.V., Klimov, O.V., Gerasimov, E.Y., Ushakov, V.A., Chetyrin, I.A., Lushchikova, A.E., Saiko, A.V., Kondrashev, D.O., Kleimenov, A.V., and Noskov, A.S., Catal. Today, 2020, vol. 353, pp. 88–98. https://doi.org/10.1016/j.cattod.2019.09.019

    Article  CAS  Google Scholar 

  101. Danilevich, V.V., Stolyarova, E.A., Vatutina, Y.V., Gerasimov, E.Y., Ushakov, V.A., Saiko, A.V., Klimov, O.V., and Noskov, A.S., Catal. Ind., 2019, vol. 11, no. 4, pp. 301–312. https://doi.org/10.1134/S2070050419040044

    Article  Google Scholar 

  102. Koval’skaya, A.A., Nadeina, K.A., Kazakov, M.O., Danilevich, V.V., Danilova, I.G., Gerasimov, E.Y., Klimov, O.V., and Noskov, A.S., Russ. J. Appl. Chem., 2018, vol. 91, no. 12, pp. 2022–2029. https://doi.org/10.1134/S1070427218120145

    Article  Google Scholar 

  103. Nadeina, K.A., Kazakov, M.O., Kovalskaya, A.A., Danilova, I.G., Cherepanova, S.V., Danilevich, V.V., Gerasimov, E.Y., Prosvirin, I.P., Kondrashev, D.O., Kleimenov, A.V., Klimov, O.V., and Noskov, A.S., Catal. Today, 2020, vol. 353, pp. 53–62. https://doi.org/10.1016/j.cattod.2019.10.028

    Article  CAS  Google Scholar 

  104. RF Patent 2623436, 2017.

  105. RF Patent 2735668, 2020.

  106. Zhuzhgov, A.V., Kruglyakov, V.Y., Suprun, E.A., Protsenko, R.S., and Isupova, L.A., Russ. J. Appl. Chem., 2021, vol. 94, no. 2, pp. 152–161. https://doi.org/10.1134/S107042722102004X

    Article  CAS  Google Scholar 

  107. AllBiz Global Tarde. https://ru.all.biz/polye-korundovye-mikrosfery-g3265840. Cited September 6, 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Isupova.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isupova, L.A., Kovalenko, O.N., Andreeva, A.V. et al. Aluminium Oxide Catalysts and Supports Synthesized by Thermal Activation Technology. Catal. Ind. 14, 145–156 (2022). https://doi.org/10.1134/S2070050422020039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050422020039

Keywords:

Navigation