Skip to main content
Log in

Methanol Steam Reforming on Cd–Zn/TiO2 and Cu–Zn/TiO2 Catalysts in a Microchannel Reactor

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

New Cd–Zn/TiO2 and Cu–Zn/TiO2 catalysts based on nanodispersed titanium(IV) oxide are synthesized and characterized via X-ray diffraction analysis, low-temperature nitrogen adsorption, and temperature-programmed reduction with hydrogen. The activity of the synthesized catalysts in methanol steam reforming is studied under conditions of a microchannel reactor. It is shown that the highest activity is exhibited by Cd-containing catalysts, which are also characterized by the lowest carbon monoxide selectivity. The catalytic and physicochemical properties of the studied catalysts are compared. A correlation between the catalyst activity and the ability of Ti4+ cations in a TiO2 support to undergo partial hydrogen reduction to Ti3+ is shown. It is speculated that the reducibility of titanium cations depends on the semiconductor properties of the oxides in the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Kolb, G., Chem. Eng. Process., 2013, vol. 65, pp. 1–44. https://doi.org/10.1016/j.cep.2012.10.015

    Article  CAS  Google Scholar 

  2. Iulianelli, A., Ribeirinha, P., Mendes, A., and Basile, A., Renewable Sustainable Energy Rev., 2014, vol. 29, pp. 355–368. https://doi.org/10.1016/j.rser.2013.08.032

    Article  CAS  Google Scholar 

  3. Joensen, F., and Rostrup-Nielsen, J.R., J. Power Sources, 2002, vol. 105, no. 2, pp. 195–201. https://doi.org/10.1016/S0378-7753(01)00939-9

    Article  CAS  Google Scholar 

  4. Amphlett, J.C., Creber, K.A.M., Davis, J.M., Mann, R.F., Peppley, B.A., and Stokes, D.M., Int. J. Hydrogen Energy, 1994, vo. 19, no. 2, pp. 131–137. https://doi.org/10.1016/0360-3199(94)90117-1

    Article  CAS  Google Scholar 

  5. Agrell, J., Boutonnet, M., and Fierro, J.L.G., Appl. Catal., A, 2003, vol. 253, no. 1, pp. 213–223. https://doi.org/10.1016/S0926-860X(03)00521-0

  6. Yong, S.T., Ooi, C.W., Chai, S.P., and Wu, X.S., Int. J. Hydrogen Energy, 2013, vol. 38, no. 22, pp. 9541–9552. https://doi.org/10.1016/j.ijhydene.2013.03.023

    Article  CAS  Google Scholar 

  7. Suwa, Y., Ito, S.-I., Kameoka, S., Tomishige, K., and Kunimori, K., Appl. Catal., A, 2004, vol. 267, nos. 1–2, pp. 9–16. https://doi.org/10.1016/j.apcata.2004.02.016

  8. Pfeifer, P., Schubert, K., Liauw, M.A., and Emig, G., Appl. Catal., A, 2004, vol. 270, nos. 1–2, pp. 165–175. https://doi.org/10.1016/j.apcata.2004.04.037

  9. Agrell, J., Germani, G., Järås, S.G., and Boutonnet, M., Appl. Catal., A, 2003, vol. 242, no. 2, pp. 233–245. https://doi.org/10.1016/S0926-860X(02)00517-3

  10. Cai, F., Lu, P., Ibrahim, J.J., Fu, Y., Zhang, J., and Sun, Y., Int. J. Hydrogen Energy, 2019, vol. 44, no. 23, pp. 11717–11733. https://doi.org/10.1016/j.ijhydene.2019.03.125

    Article  CAS  Google Scholar 

  11. Pinzari, F., Patrono, P., and Costantino, U., Catal. Commun., 2006, vol. 7, no. 9, pp. 696–700. https://doi.org/10.1016/j.catcom.2006.02.015

    Article  CAS  Google Scholar 

  12. Chang, F.-W., Ou, T.-C., Selva Roselin, L., Chen, W.-S., Lai, S.-C., and Wu, H.-M., J. Mol. Catal. A: Chem., 2009, vol. 313, nos. 1–2, pp. 55–64. https://doi.org/10.1016/j.molcata.2009.08.002

  13. Kim, S. and Kang, M., J. Ind. Eng. Chem., 2012, vol. 18, no. 3, pp. 969–978. https://doi.org/10.1016/j.jiec.2011.10.009

    Article  CAS  Google Scholar 

  14. Rossetti, I., Lasso, J., Finocchio, E., Ramis, G., Nichele, V., Signoretto, M., and Di Michele, A., Appl. Catal., A, 2014, vol. 477, pp. 42–53. https://doi.org/10.1016/j.apcata.2014.03.004

  15. Finocchio, E., Rossetti, I., and Ramis, G., Int. J. Hydrogen Energy, 2013, vol. 38, no. 8, pp. 3213–3225. https://doi.org/10.1016/j.ijhydene.2012.12.137

    Article  CAS  Google Scholar 

  16. Busca, G., Resini, C., Montanari, T., Ramis, G., and Costantino, U., Catal. Today, 2009, vol. 143, nos. 1–2, pp. 2–8. https://doi.org/10.1016/j.cattod.2008.09.010

  17. Del Arco, M., Caballero, A., Malet, P., and Rives, V., J. Catal., 1988, vol. 113, no. 1, pp. 120–128. https://doi.org/10.1016/0021-9517(88)90242-4

    Article  CAS  Google Scholar 

  18. Deshmane, V.G., Owen, S.L., Abrokwah, R.Y., and Kuila, D., J. Mol. Catal. A: Chem., 2015, vol. 408, pp. 202–213. https://doi.org/10.1016/j.molcata.2015.07.023

    Article  CAS  Google Scholar 

  19. Gribovskii, A.G., Makarshin, L.L., Andreev, D.V., Korotaev, S.V., Zaikovskii, V.I., and Parmon, V.N., Kinet. Catal., 2009, vol. 50, no. 4, pp. 444–449. https://doi.org/10.1134/S0023158409030161

    Article  CAS  Google Scholar 

  20. Moretti, E., Storaro, L., Talon, A., Patrono, P., Pinzari, F., Montanari, T., Ramis, G. and Lenarda, M., Appl. Catal., A, 2008, vol. 344, nos. 1–2, pp. 165–174. https://doi.org/10.1016/j.apcata.2008.04.015

  21. Jiang, X., Lu, G., Zhou, R., Mao, J., Chen, Y., and Zheng, X., Appl. Surf. Sci., 2001, vol. 173, pp. 208–220. https://doi.org/10.1016/S0169-4332(00)00897-7

    Article  Google Scholar 

  22. Sun, C., Zhu, J., Lv, Y., Qi, L., Liu, B., Gao, F., Sun, K., Dong, L., and Chen, Y., Appl. Catal., B, 2011, vol. 103, nos. 1–2, pp. 206–220. https://doi.org/10.1016/j.apcatb.2011.01.028

  23. Wu, Z., Zhu, H., Qin, Z., Wang, H., Huang, L., and Wang, J., Appl. Catal., B, 2010, vol. 98, nos. 3–4, pp. 204–212. https://doi.org/10.1016/j.apcatb.2010.05.030

  24. Hurst, N.W., Gentry, S.J., Jones, A., McNicol, B.D., Catal. Rev.: Sci. Eng., 1982, vol. 24, no. 2, pp. 233–309. https://doi.org/10.1080/03602458208079654

    Article  CAS  Google Scholar 

  25. Tahay, P., Khani, Y., Jabari, M., Bahadoran, F., and Safari, N., Appl. Catal., A, 2018, vol. 554, pp. 44–53. https://doi.org/10.1016/j.apcata.2018.01.022

  26. Kirk-Othmer Encyclopedia of Chemical Technology, New York: Wiley, 1991–1998.

  27. Yuan, S., Mériaudeau, P., and Perrichon, V., Appl. Catal., B, 1994, vol. 3, no. 4, pp. 319–333. https://doi.org/10.1016/0926-3373(94)00005-0

    Article  CAS  Google Scholar 

  28. Chen, H.-W., White, J.M., and Ekerdt, J.G., J. Catal., 1986, vol. 99, no. 2, pp. 293–303. https://doi.org/10.1016/0021-9517(86)90354-4

    Article  CAS  Google Scholar 

  29. Zortea, G.L.B., Friedrich, J., de Almeida, T.P., Cantão, M.P., Rizzo-Domingues, R.C.P., Abstract of Papers, Proc. 2nd International Seminar on Industrial Innovation in Electrochemistry, 2016, vol. 4, no. 1, pp 117–122. https://doi.org/10.5151/chempro-s3ie2016-10

Download references

Funding

This work was performed as a part of the state task to the Boreskov Institute of Catalysis, project no. AAAAA17-117041710082-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Andreev.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, D.V., Sergeev, E.E. Methanol Steam Reforming on Cd–Zn/TiO2 and Cu–Zn/TiO2 Catalysts in a Microchannel Reactor. Catal. Ind. 13, 150–160 (2021). https://doi.org/10.1134/S2070050421020021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050421020021

Keywords:

Navigation