Skip to main content
Log in

Catalytic Synthesis of Triethanolamine in a Microchannel Reactor

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Experimental studies of ammonia oxyethylation in a flow microchannel reactor are performed in broad ranges of temperatures (70–180°C) and residence times (0.47–3.3 min). The main products of the reaction between ethylene oxide (EO) and ammonia are monoethanolamine (MEA), diethanolamine (DEA), and target triethanolamine (TEA). It is shown that EO conversion grows along with residence time τ and reaches 90% at τ = 3.3 min. The highest selectivity toward MEA and DEA is observed at a temperature of 70°C and τ = 3.3 min. High selectivity toward TEA (84%) is achieved at short τ (0.47 min) and the maximum temperature (180°C). The TEA yield grows along with temperature and the residence time to reach 62% at τ = 3.3 min and temperatures of 155–180°C. Mathematical modeling of the ammonia oxyethylation process allows the kinetic constants of individual stages to be calculated. Differences between the obtained kinetic parameters and the literature data, due probably to using a microchannel reactor that ensures high parameters of heat and mass transfer instead of a traditional bulk triethanolamine synthesis reactor, are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Young, J.A., J. Chem. Educ., 2004, vol. 81, no. 1, p. 24.

    Article  CAS  Google Scholar 

  2. Tsuneki, H. and Moriya, A., Chem. Eng. J., 2009, vol. 149, nos. 1–3, pp. 363–369.

  3. Zahedi, G., Amraei, S., and Biglari, M., Korean J. Chem. Eng., 2009, vol. 26, no. 6, pp. 1504–1511.

    Article  CAS  Google Scholar 

  4. Tsuneki, H., Kirishiki, M., and Oku, T., Bull. Chem. Soc. Jpn., 2007, vol. 80, no. 6, pp. 1075–1090.

    Article  CAS  Google Scholar 

  5. Tsuneki, H., Catal. Surv. Asia, 2010, vol. 14, nos. 3–4, pp. 116–123.

  6. Ruming, F., Deju, W., Zhongneng, L., and Zaiku, X., Catal. Commun., 2010, vol. 11, no. 15, pp. 1220–1223.

    Article  CAS  Google Scholar 

  7. Andreev, D.V., Makarshin, L.L., Gribovskii, A.G., Yushchenko, D.Y., Sergeev, E.E., Zhizhina, E.G., Pai, Z.P., and Parmon, V.N., Chem. Eng. J., 2015, vol. 259, pp. 252–256.

    Article  CAS  Google Scholar 

  8. Lin, F.-L. and Xiong, D.-S., Chin. J. Spectrosc. Lab., 2003, vol. 20, no. 6, pp. 884–887.

    CAS  Google Scholar 

  9. Baerns, M., Hofmann, H., and Renken, A., in Lehrbuch der Technischen Chemie, Baerns, M., Fetting, F., Hofmann, H., Keim, W., and Onken, U., Eds. Stuttgart: Georg Thieme, 1999.

    Google Scholar 

  10. Horny, C., Kiwi-Minsker, L., and Renken, A., Chem. Eng. J., 2004, vol. 101, pp. 3–9.

    Article  CAS  Google Scholar 

  11. Karim, A., Bravo, J., and Datye, A., Appl. Catal., A, 2005, vol. 282, nos. 1–2, pp. 101–109.

  12. Bellos, G.D. and Papayannakos, N.G., Catal. Today, 2003, vols. 79–80, pp. 349–355.

  13. Andreev, D.V., Sergeev, E.E., Gribovskii, A.G., Makarshin, L.L., Prikhod’ko, S.A., Adonin, N.Yu., Pai, Z.P., and Parmon, V.N., Chem. Eng. J., 2017, vol. 330, pp. 899–905.

    Article  CAS  Google Scholar 

  14. Ermakova, A., in Promyshlennyi kataliz v lektsiyakh (Industrial Catalysts in Lectures), Noskov, A.S., Ed., Moscow: Kalvis, 2006, no. 4, pp. 67–114.

  15. Hatta, M., Ito, T., Miki, M. and Okabe, T., J. Jpn. Oil Chem. Soc., 1966, vol. 15, pp. 215–220.

    Article  Google Scholar 

  16. McMillan, T., Tech. Rep.—SRI Int., 1991, vol 193, no. 6, pp. 1–46.

    Google Scholar 

  17. Longuet, C., Coq, B., Durand, R., Finiels, A., Geneste, P., and Mauvezin, M., J. Mol. Catal. A: Chem., 2005, vol. 234, nos. 1–2, pp. 59–62.

  18. Zahedi, H., Amraei, S., and Biglari, M., Korean J. Chem. Eng., 2009, vol. 26, no. 6, pp. 1504–1511.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed as part of a State Task for the Boreskov Institute of Catalysis, project nos. AAAA-A17-117041710082-8 and AAAA-A17-117041710081-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Andreev.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, D.V., Sergeev, E.E., Makarshin, L.L. et al. Catalytic Synthesis of Triethanolamine in a Microchannel Reactor. Catal. Ind. 11, 45–52 (2019). https://doi.org/10.1134/S2070050419010033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050419010033

Keywords:

Navigation