Skip to main content
Log in

Lactic acid production using free cells of bacteria and filamentous fungi and cells immobilized in polyvinyl alcohol cryogel: A comparative analysis of the characteristics of biocatalysts and processes

  • Biocatalysis
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The results from studies and a comparative analysis of process characteristics are presented for lactic acid (LA) production from glucose, performed under batch conditions of the long-duration use of different biocatalyst samples comprising cells of Lactobacillus сasei bacteria and Rhizopus oryzae filamentous fungi immobilized in polyvinyl alcohol (PVA) cryogel or applied as concentrated suspensions. It is established that for LA production, the bacteria and fungi must be used in the form of PVA-cryogel-immobilized cells because their half-life in this form is considerably longer than that of concentrated cell suspensions. After 200 h of the batch use of the same immobilized cell samples, the amounts of accumulated LA were similar for both fungal (920 ± 5 g) and bacterial (895 ± 5 g) biocatalysts. The fungal biocatalyst, however, was characterized by a twice higher rate of substrate conversion to product (0.92 g LA per 1 g glucose) than the bacterial biocatalyst. The half-life of the immobilized fungal biocatalyst was 80 days (96 working cycles), ten times longer than that of the bacterial biocatalyst. A comparison of our data and the literature data demonstrated the promise of using fungal cells immobilized in PVA cryogel to produce LA: the process based on their use is superior to all known processes in its main indicators, i.e., the rate of LA conversion to glucose and the maximum accumulated concentration of the product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martinez, F.A.C., Balciunas, E.M., Salgado, J.M., González, J.M.D., Converti, A., and de Souza Oliveira, R.P., Trends Food Sci. Technol., 2013, vol. 30, no. 1, pp. 70–83.

    Article  CAS  Google Scholar 

  2. Abdel-Rahman, M.A., Tashiro, Y., and Sonomoto, K., Biotechnol. Adv., 2013, vol. 31, no. 6, pp. 877–902.

    Article  CAS  Google Scholar 

  3. Zhang, Z.Y., Jin, B., and Kelly, J.M., Biochem. Eng. J., 2007, vol. 35, no. 3, pp. 251–263.

    Article  CAS  Google Scholar 

  4. Efremenko, E.N., Nikolskaya, A.B., Lyagin, I.V., Senko, O.V., Makhlis, T.A., Stepanov, N.A., Maslova, O.V., Mamedova, F., and Varfolomeev, S.D., Bioresour. Technol., 2012, vol. 114, pp. 342–348.

    Article  CAS  Google Scholar 

  5. Spiricheva, O.V., Sen’ko, O.V., Veremeenko, D.V., and Efremenko, E.N., Theor. Found. Chem. Eng., 2007, vol. 41, no. 2, pp. 150–153.

    Article  CAS  Google Scholar 

  6. Efremenko, E.N., Spiricheva, O.V., Veremeenko, D.V., Baibak, A.V., and Lozinsky, V.I., J. Chem. Technol. Biotechnol., 2006, vol. 81, no. 4, pp. 519–522.

    Article  CAS  Google Scholar 

  7. Luedeking, R. and Piret, E.L., Biotechnol. Bioeng., 2000, vol. 67, no. 6, pp. 636–644.

    Article  CAS  Google Scholar 

  8. Ilushka, I.V., Dotsenko, S.P., Borovskiy, A.B., and Arutyunyan, M.M., Nauchn. Zh. KubGAU, 2012, vol. 83, no. 9, pp. 634–642.

    Google Scholar 

  9. Efremenko, E.N., Stepanov, N.A., Gudkov, D.A., Senko, O.V., Lozinsky, V.I., and Varfolomeev, S.D., Catal. Ind., 2013, vol. 5, no. 1, pp. 190–198.

    Article  Google Scholar 

  10. RF Patent 2253677, 2005.

  11. Stone, K.M., Roche, F.W., and Thornhill, N.F., Biotechnol. Tech., 1992, vol. 6, no. 3, pp. 207–212.

    Article  CAS  Google Scholar 

  12. Efremenko, E., Spiricheva, O., Varfolomeev, S., and Lozinsky, V., Appl. Microbiol. Biotechnol., 2006, vol. 72, no. 3, pp. 480–485.

    Article  CAS  Google Scholar 

  13. Varfolomeev, S.D., Khimicheskaya enzimologiya. Klassicheskii universitetskii uchebnik (Chemical Enzymology: Classic Textbook for Universities), Moscow: Akademiya, 2005.

    Google Scholar 

  14. Hujanen, M., Linko, S., Linko, Y.-Y., and Leisola, M., Appl. Microbiol. Biotechnol., 2001, vol. 56, no. 1, pp. 126–130.

    Article  CAS  Google Scholar 

  15. Hamamci, H. and Ryu, D.D., Appl. Microbiol. Biotechnol., 1988, vol. 28, no. 6, pp. 515–519.

    Article  CAS  Google Scholar 

  16. Dong, X.-Y., Bai, S., and Sun, Y., Biotechnol. Lett., 1996, vol. 18, no. 2, pp. 225–228.

    Article  CAS  Google Scholar 

  17. Sun, Y., Li, Y.-L., Bai, S., Yang, H., and Hu, Z.-D., Bioprocess Eng., 1998, vol. 19, no. 2, pp. 155–157.

    CAS  Google Scholar 

  18. Tay, A. and Yang, S.-T., Biotechnol. Bioeng., 2002, vol. 80, no. 1, pp. 1–12.

    Article  CAS  Google Scholar 

  19. Hang, Y.D., Hamamci, H., and Woodams, E.E., Biotechnol. Lett., 1989, vol. 11, no. 2, pp. 119–120.

    Article  CAS  Google Scholar 

  20. Yoo, I.-K., Seong, G.H., Chang, H.N., and Park, J.K., Enzyme Microb. Technol., 1996, vol. 19, no. 6, pp. 428–433.

    Article  CAS  Google Scholar 

  21. Senthuran, A., Senthuran, V., Mattiasson, B., and Kaul, R., Biotechnol. Bioeng., 1997, vol. 55, no. 6, pp. 841–853.

    Article  CAS  Google Scholar 

  22. Hujanen, M. and Linko, Y.-Y., Appl. Microbiol. Biotechnol., 1996, vol. 45, no. 3, pp. 307–313.

    Article  CAS  Google Scholar 

  23. Kwon, Y.J., Kaul, R., and Mattiasson, B., Biotechnol. Bioeng., 1996, vol. 50, no. 3, pp. 280–290.

    Article  CAS  Google Scholar 

  24. Vick Roy, T.B., Blanch, H.W., and Wilke, C.R., Biotechnol. Lett., 1982, vol. 4, no. 8, pp. 483–488.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Maslova.

Additional information

Original Russian Text © O.V. Maslova, O.V. Sen’ko, N.A. Stepanov, E.N. Efremenko, 2016, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslova, O.V., Sen’ko, O.V., Stepanov, N.A. et al. Lactic acid production using free cells of bacteria and filamentous fungi and cells immobilized in polyvinyl alcohol cryogel: A comparative analysis of the characteristics of biocatalysts and processes. Catal. Ind. 8, 280–285 (2016). https://doi.org/10.1134/S2070050416030089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050416030089

Keywords

Navigation