Skip to main content
Log in

Boundary Conditions in Modeling the Modification of Materials by Laser Pulses

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

Sharply focused pulses are required to modify transparent materials by femtosecond laser pulses. To model the modification process, it is necessary to compute the distribution of the electric field of the laser pulse at distances of the order of hundreds of microns from the focus. The frequently used paraxial approximation in the case of a sharp focus is not applicable. It is necessary to calculate a specific optical system. In the case when a parabolic mirror is used as a focusing element, the desired field distribution can be obtained using the Stratton–Chu integral (SCI). In this paper the generalization of the SCI to the case of a finite-time (femtosecond) pulse and a simplification of the SCI for the case of a large mirror located far from the focus are presented. This is typical for a wide range of practical problems. In addition, specific formulas of the SCI for frequently used polarizations of laser pulses are given. The main achievement of this paper is the development of extremely effective numerical methods of computing the SCI, which is the integral of a rapidly oscillating function. As an example, the calculation of the field of a focused laser pulse with a cylindrical intensity distribution along the radius (top-hat pulse) is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Progr. Mater. Sci. 76, 154–228 (2016). https://doi.org/10.1016/j.pmatsci.2015.09.002

    Article  Google Scholar 

  2. H. Misawa and S. Juodkazis, 3D Laser Microfabrication: Principles and Applications (Wiley, Weinheim, 2006).

    Book  Google Scholar 

  3. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon. 2, 219–225 (2008). https://doi.org/10.1038/nphoton.2008.47

    Article  Google Scholar 

  4. S. M. Yalisove, K. Sugioka, and C. P. Grigoropoulos, “Advances and opportunities of ultrafast laser synthesis and processing,” MRS Bull. 41, 955–959 (2016). https://doi.org/10.1557/mrs.2016.273

    Article  Google Scholar 

  5. N. Linz, S. Freidank, X.-X. Liang, and A. Vogel, “Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery,” Phys. Rev. B 94, 024113 (2016). https://doi.org/10.1103/PhysRevB.94.024113

    Article  Google Scholar 

  6. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005). https://doi.org/10.1103/PhysRevB.71.125435

    Article  Google Scholar 

  7. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variation induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007). https://doi.org/10.1063/1.2436925

    Article  Google Scholar 

  8. A. V. Dostovalov, A. A. Wolf, V. K. Mezentsev, A. G. Okhrimchuk, and S. A. Babin, “Quantitative characterization of energy absorption in femtosecond laser micro-modification of fused silica,” Opt. Express 23, 32541–32547 (2015). https://doi.org/10.1364/oe.23.032541

    Article  Google Scholar 

  9. K. I. Popov, C. McElcheran, K. Briggs, S. Mack, and L. Ramunno, “Morphology of femtosecond laser modification of bulk dielectrics,” Opt. Express 19, 271–282 (2011). https://doi.org/10.1364/OE.19.000271

    Article  Google Scholar 

  10. C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express 15, 10303−10317 (2007). https://doi.org/10.1364/OE.15.010303

    Article  Google Scholar 

  11. V. P. Zhukov and M. P. Fedoruk, “Numerically implemented impact of a femtosecond laser pulse on glass in the approximation of nonlinear Maxwell equations,” Math. Models Comput. Simul. 12, 77–89 (2020). https://doi.org/10.1134/S207004822001010X

    Article  MathSciNet  Google Scholar 

  12. V. P. Zhukov, A. M. Rubenchik, M. P. Fedoruk, and N. M. Bulgakova, “Interaction of doughnut-shaped laser pulses with glasses,” J. Opt. Soc. Am. B 34, 463–471 (2017). https://doi.org/10.1364/JOSAB.34.000463

    Article  Google Scholar 

  13. V. P. Zhukov, N. M. Bulgakova, and M. P. Fedoruk, “Nonlinear Maxwell’s and Schrödinger equations for describing the volumetric interaction of femtosecond laser pulses with transparent solid dielectrics: Effect of the boundary conditions,” J. Opt. Technol. 84, 439–446 (2017). https://doi.org/10.1364/JOT.84.000439

    Article  Google Scholar 

  14. A. Becker, N. Aközbek, K. Vijayalakshmi, E. Oral, C. M. Bowden, and S. L. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B 73, 287–290 (2001). https://doi.org/10.1007/s003400100637

    Article  Google Scholar 

  15. Q. Sun, F. Liang, R. Vallée, and S. L. Chin, “Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses,” Opt. Lett. 33, 2713–2715 (2008). https://doi.org/10.1364/OL.33.002713

    Article  Google Scholar 

  16. J. A. Stratton and L. J. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107 (1939). https://doi.org/10.1103/PhysRev.56.99

    Article  MATH  Google Scholar 

  17. K. I. Popov, V. Yu. Bychenkov, W. Rozmus, and R. D. Sydora, “Electron vacuum acceleration by tightly focused laser pulse,” Phys. Plasmas 15, 013108 (2008). https://doi.org/10.1063/1.2830651

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank N.M. Bulgakova for her helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Zhukov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, V.P., Fedoruk, M.P. Boundary Conditions in Modeling the Modification of Materials by Laser Pulses. Math Models Comput Simul 15, 905–919 (2023). https://doi.org/10.1134/S2070048223050149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048223050149

Keywords:

Navigation