Skip to main content
Log in

Numerical Modeling of the Spatiotemporal Distribution of a Drug Agent in a Biological Tissue

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

A mathematical model of the pharmacokinetics of anticancer drugs, which presents a biological tissue as a randomly inhomogeneous medium, is proposed. The model is based on a system of reaction-diffusion equations in which the coefficients are random functions of space and time. The coefficients of the model are calculated based on the probability of processes occurring in living tissue. Examples of the application of the proposed approach on two drugs are shown: cisplatin, which is used in cancer chemotherapy, and boron-phenylalanine, which is proposed as an agent (drug) that increases the dose during irradiation. The model demonstrates good agreement with the experimental results. The described method for modeling the pharmacokinetics of drugs can serve as a universal approach for modeling the spatiotemporal distribution of many drugs, including those using nanoparticles. The simulation results allow us to propose the optimization of the existing protocols for chemotherapeutic and radiological treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. W. S. Kiger, M. R. Palmer, K. J. Riley, R. G. Zamenhof, and P. M. Busse, “Pharamacokinetic modeling for boronophenylalanine-fructose mediated neutron capture therapy: 10B concentration predictions and dosimetric consequences,” J. Neuro-Oncol. 62, 171–186 (2003). https://doi.org/10.1023/A:1023297107525

    Article  Google Scholar 

  2. M. J. Kim, R. J. Gillies, and K. A. Rejniak, “Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues,” Front. Oncol. 3, 278, 1–10 (2013). https://doi.org/10.3389/fonc.2013.00278

    Article  Google Scholar 

  3. K. Ulbrich, K. Holá, V. Šubr, A. Bakandritsos, J. Tuček, and R. Zbořil, “Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies,” Chem. Rev. 116 (9), 5338–5431 (2016). https://doi.org/10.1021/acs.chemrev.5b00589

    Article  Google Scholar 

  4. E. Syková and C. Nicholson, “Diffusion in brain extracellular space,” Physiol. Rev. 88 (4), 1277–1340 (2008). https://doi.org/10.1152/physrev.00027.2007

    Article  Google Scholar 

  5. J. Schuemann, A. F. Bagley, R. Berbeco, K. Bromma, et al., “Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions,” Phys. Med. Biol. 65 (21), 21RM02 (2020). https://doi.org/10.1088/1361-6560/ab9159

    Article  Google Scholar 

  6. F. Moukalled, L. Mangani, and M. Darwish, The Finite Volume Method in Computational Fluid Dynamics. An Advanced Introduction with OpenFOAM® and Matlab, Fluid Mechanics and Its Applications, vol. 113 (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-16874-6.

  7. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. (SIAM, Philadelphia, PA, 2003). https://doi.org/10.1137/1.9780898718003.

  8. H. Fukuda, C. Honda, N. Wadabayashi, T. Kobayashi, K. Yoshino, J. Hiratsuka, J. Takahashi, T. Akaizawa, Y. Abe, M. Ichihashi, and Y. Mishima, “Pharmacokinetics of 10B-p-boronophenylalanine in tumours, skin and blood of melanoma patients: A study of boron neutron capture therapy for malignant melanoma,” Melanoma Res. 9 (1), 75–84 (1999). https://doi.org/10.1097/00008390-199902000-00010

    Article  Google Scholar 

  9. H. Fukuda and J. Hiratsuka, “Pharmacokinetics of 10B-p-boronophenylalanine (BPA) in the blood and tumors in human patients: A critical review with special reference to tumor-to-blood (T/B) ratios using resected tumor samples,” Appl. Radiat. Isot. 166, 109308 (2020). https://doi.org/10.1016/j.apradiso.2020.109308

    Article  Google Scholar 

  10. K. A. Tacka, D. Szalda, A. K. Souid, J. Goodisman, and J. C. Dabrowiak, “Experimental and theoretical studies on the pharmacodynamics of cisplatin in Jurkat cells,” Chem. Res. Toxicol. 17 (11), 1434–1444 (2004). https://doi.org/10.1021/tx0498760

    Article  Google Scholar 

  11. K. A. Tacka, J. C. Dabrowiak, J. Goodisman, H. S. Penefsky, and A. K. Souid, “Effects of cisplatin on mitochondrial function in Jurkat cells,” Chem. Res. Toxicol. 17 (8), 1102–1111 (2004). https://doi.org/10.1021/tx0499564

    Article  Google Scholar 

  12. J. D. Holding, W. E. Lindup, D. A. Bowdler, M. Z. Siodlak, and P. M. Stell, “Disposition and tumour concentrations of platinum in hypoalbuminaemic patients after treatment with cisplatin for cancer of the head and neck,” Br. J. Clin. Pharmacol. 32 (2), 173–179 (1991). https://doi.org/10.1111/j.1365-2125.1991.tb03878.x

    Article  Google Scholar 

  13. S. Xu, B. Z. Olenyuk, C. T. Okamoto, and S. F. Hamm-Alvarez, “Targeting receptor-mediated endocytotic pathways with nanoparticles: Rationale and advances,” Adv. Drug Delivery Rev. 65 (1), 121–138 (2013). https://doi.org/10.1016/j.addr.2012.09.041

    Article  Google Scholar 

  14. D. Hymel and B. R. Peterson, “Synthetic cell surface receptors for delivery of therapeutics and probes,” Adv. Drug Delivery Rev. 64 (9), 797–810 (2012). https://doi.org/10.1016/j.addr.2012.02.007

    Article  Google Scholar 

  15. H. Hillaireau and P. Couvreur, “Nanocarriers’ entry into the cell: Relevance to drug delivery,” Cell. Mol. Life Sci. 66 (17), 2873–2896 (2009). https://doi.org/10.1007/s00018-009-0053-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Ginevsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginevsky, A.F., Ginevsky, D.A. & Izhevsky, P.V. Numerical Modeling of the Spatiotemporal Distribution of a Drug Agent in a Biological Tissue. Math Models Comput Simul 14, 442–451 (2022). https://doi.org/10.1134/S207004822203005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207004822203005X

Keywords:

Navigation