Skip to main content
Log in

On the Issue of the Gravitational Instability of the Solar Protoplanetary Disk

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The gravitational instability of a homogeneous isotropic infinite gravitating gaseous medium is investigated in order to study the physical processes that take place during the formation of the solar planetary system. The analytical and numerical solutions of the motion equations of such a medium are considered in two approximations: cold gas and gas at a finite temperature. The real solutions describing the behavior of both wave density disturbances of a homogeneous medium and single disturbances are obtained. Waves of gravitational instability whose amplitude grows exponentially and whose highs and lows, as well as their nodal points, retain their positions in space follow the basic laws of Jean’s model. The authors interpret this wave of instability as an analogue of protoplanetary rings, which can be formed in protoplanetary disks. According to the numerical calculation results, the reaction of a homogeneous gravitating medium to the single initial perturbation of its density is significantly different from the laws of Jean’s model. The instability localized in single initial perturbations extends to the region λ < λJ, although in this case the growth of the perturbation density is considerably less than for λ > λJ. It is discovered that the gravitational instabilities in the region λ > λJ suppress sound. It is shown that, without taking into account the rotation of the Sun’s protoplanetary disk medium, its critical density in the event of a large-scale gravitational instability is about four orders of magnitude smaller than the critical density in accordance with the theory of planet formation by the accumulation of solids and particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Zabrodin, M. S. Legkostupov, L. A. Pliner, V. A. Cherkashin, and A. V. Severin, “The mechanism of planetary bodies accumulation,,” KIAM Final Report, Inv. No. 8-2-04 (KIAM, Moscow, 2004), p. 40.

    Google Scholar 

  2. A. V. Zabrodin, M. S. Legkostupov, L. A. Pliner, E. A. Zabrodina, and K. V. Manukovskii, “Numerical simulation of the evolution of the protoplanetary disk of the Sun at its initial stage,,” KIAM Final Report, Inv. No. 8-3-06 (KIAM, Moscow, 2006), p. 47.

    Google Scholar 

  3. A. V. Zabrodin, E. A. Zabrodina, M. S. Legkostupov, K. V. Manukovskii, and L. A. Pliner, “Some models of proto-planet disk of the Sun at an initial stage of its evolution,” KIAM Preprint No. 70 (KIAM, Moscow, 2006).

    Google Scholar 

  4. A. V. Zabrodin, E. A. Zabrodina, M. S. Legkostupov, K. V. Manukovskii, and L. A. Pliner, “Some models of the description of the protoplanetary disk of the Sun at the initial stage of its evolution,” in Problems of the Origin and Evolution of Biosphere, Ed. by E. M. Galimov (Librokov, Moscow, 2008), pp. 297–316 [in Russian].

    Google Scholar 

  5. K. V. Brushlinskii, L. A. Pliner, E. A. Zabrodina, I. S. Menshov, V. T. Zhukov, G. V. Dolgoleva, and M. S. Legkostupov, “Gravitational instability in the protoplanet disk,” in Proceedings of the 3rd International Conference BioSphere Origin and Evolution, Rithymno, Crete, Greece, Oct. 16–20, 2011, pp. 31–33.

    Google Scholar 

  6. K. V. Brushlinskii, G. V. Dolgoleva, V. T. Zhukov, E. A. Zabrodina, M. S. Legkostupov, I. S. Menshov, and L. A. Pliner, “On the evolution of the protoplanetary disk of the Sun,” Problems of the Origin and Evolution of Biosphere, Ed. by E. M. Galimov (Krasand, Moscow, 2013), p. 33–46 [in Russian].

    Google Scholar 

  7. M. S. Legkostupov, “On the issue of gravitational instability of the protoplanetary disk of the Sun. Part I. Formulation of the problem,” KIAM Preprint No. 34 (KIAM, Moscow, 2014).

    Google Scholar 

  8. M. S. Legkostupov, “On the issue of gravitational instability of the Sun protoplanetary disk. Part II. The dispersion equations,,” KIAM Preprint No. 35 (KIAM, Moscow, 2014).

    Google Scholar 

  9. M. S. Legkostupov, “On the issue of gravitational instability of the Sun protoplanetary disk. Part III. The development and substantiation of the model,,” KIAM Preprint No. 36 (KIAM, Moscow, 2014).

    Google Scholar 

  10. V. S. Safronov, Evolution of the Protoplanet Cloud and Formation of the Earth and the Planets (Nauka, Moscow, 1969; Israel Program Sci. Transl., Jerusalem, 1972).

    Google Scholar 

  11. A. V. Vityazev, G. V. Pechernikova, and V. S. Safronov, Planets of the Earth’s Group: Origin and Early Evolution (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  12. T. Gold, “Problems requiring solution,” in Origin of Solar System, Ed. by R. Jastrow and A. Cameron (Academic, New York, London, 1963), p. 171.

    Google Scholar 

  13. T. M. Eneev and N. N. Kozlov, “Model of the accumulation process of formation of planetary systems,” Astron. Vestn. 15, 80–94 (1981).

    Google Scholar 

  14. V. N. Larin, The Hypothesis of Primordial Hydride Earth (Nedra, Moscow, 1980) [in Russian].

    Google Scholar 

  15. O. L. Kuskov, V. A. Dorofeeva, V. A. Kronrod, and A. B. Makalkin, Systems of Jupiter and Saturn: Formation, Composition and Internal Structure of Large Satellites (LKI, Moscow, 2009) [in Russian].

    Google Scholar 

  16. M. Sekiya and H. Takeda, “Were planetesimals formed by dust accretion in the solar nebula?,” Earth Planets Space 55, 263–269 (2003).

    Article  Google Scholar 

  17. E. I. Chiang, “Dust in protoplanetary disks,” ASP Conf. Ser. 309, 213–228 (2004).

    Google Scholar 

  18. V. L. Polyachenko and A. M. Fridman, “On the law of planetary distances,” Astron. Rep. 16, 123 (1996).

    Google Scholar 

  19. V. L. Polyachenko and A. M. Fridman, Physics of Gravitating Systems I: Equilibrium and Stability (Nauka, Moscow, 1976; Springer, Berlin, Heidelberg, 1984).

    MATH  Google Scholar 

  20. N. N. Kozlov and T. M. Eneev, “Numerical simulation of the formation of planets from a protoplanetary disk,,” KIAM Preprint No. 134 (KIAM, Moscow, 1977).

    Google Scholar 

  21. T. M. Eneev and N. N. Kozlov, “Model of the accumulation process of formation of planetary systems,” Astron. Vestn. 15, 131–140 (1981).

    Google Scholar 

  22. T. M. Eneev, “Ring compression of matter in the drip model of the protoplanetary cloud,” Astron. Vestn. 27 (5), 3–25 (1993).

    Google Scholar 

  23. E. M. Galimov, A. M. Krivtsov, A. V. Zabrodin, M. S. Legkostupov, T. M. Eneev, and Yu. I. Sidorov, “Dynamic model for the formation of the Earth–Moon system,” Geochem. Int. 43, 1045 (2005).

    Google Scholar 

  24. E. M. Galimov, “Formation of the Moon and the Earth from a common supraplanetary gas–dust cloud (Lecture presented at the XIX All-Russia Symposium on Isotope Geochemistry on November 16, 2010),” Geochem. Int. 49, 537 (2011).

    Article  Google Scholar 

  25. E. M. Galimov, “Analysis of isotope systems (Hf-W, Rb-Sr, J-Pu-Xe, U-Pb) with reference to the problem of planetary formation using the Earth-Moon system as an example,” in Problems of the Origin and Evolution of Biosphere, Ed. by E. M. Galimov (Moscow, Krasand, 2013), pp. 47–59 [in Russian].

    Google Scholar 

  26. J. H. Jeans, Astronomy and Cosmogony (Cambridge, Univ. Press, Cambridge, 1929).

    MATH  Google Scholar 

  27. Ya. B. Zeldovich and I. D. Novikov, Relativistic Astrophysics (Nauka, Moscow, 1967; Univ. of Chicago Press, Chicago, 1971).

    Google Scholar 

  28. E. M. Lifshits, Zh. Eksp. Teor. Fiz. 16, 587 (1946).

    Google Scholar 

  29. W. B. Bonnor, Appl. Math. 8, 263 (1967).

    Google Scholar 

  30. J. W. Bond, K. Watson, and J. Welch, Physical Theory of Gasdynamics (Addison-Wesley, Reading, MA, 1965).

    Google Scholar 

  31. F. A. Baum, S. A. Kaplan, and K. P. Stanyukovich, Introduction to Cosmic Gas Dynamics (Fizmatlit, Moscow, 1958; Tech. Inform. Center, 1958).

    Google Scholar 

  32. V. G. Gorbatskii, Cosmic Gas Dynamics (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  33. A. B. Makalkin and V. A. Dorofeeva, “The structure of the protoplanetary accretion disk around the Sun at the T Tauri stage,” Astron. Vestn. 29, 99–122 (1995).

    Google Scholar 

  34. A. B. Makalkin and V. A. Dorofeeva, “The structure of the protoplanetary accretion disk around the Sun at the T Tauri stage: II. Results of model calculations,” Solar Syst. Res. 30, 440 (1996).

    Google Scholar 

  35. G. V. Dolgoleva, M. S. Legkostupov, and L. A. Pliner, “Numerical simulation of gravitational instability of the Sun protoplanetary disk in the one-dimensional approximation. Part I. A homogeneous isotropic medium,,” KIAM Preprint No. 49 (KIAM, Moscow, 2016).

    Google Scholar 

  36. N. S. Koshlyakov, E. B. Gliner, and M. M. Smirnov, Differential Equations of Mathematical Physics (Vysshaya Shkola, Moscow, 1970) [in Russian]

    MATH  Google Scholar 

  37. Proceedings of the Symposium on the Origin of the Solar System, Nice, France, 1972, Ed. by H. Reeves (CNRS, Paris, 1972).

  38. R. Ebert, PhD Dissertation (Univ. Frankfurt-am-Main, 1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Dolgoleva.

Additional information

Original Russian Text © G.V. Dolgoleva, M.S. Legkostupov, L.A. Pliner, 2018, published in Matematicheskoe Modelirovanie, 2018, Vol. 30, No. 2, pp. 130–148.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgoleva, G.V., Legkostupov, M.S. & Pliner, L.A. On the Issue of the Gravitational Instability of the Solar Protoplanetary Disk. Math Models Comput Simul 10, 616–628 (2018). https://doi.org/10.1134/S2070048218050058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048218050058

Keywords

Navigation