Skip to main content
Log in

Upscaling relative phase permeability for superelement modeling of petroleum reservoir engineering

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

A technique for locally rescaling (upscaling) the functions of the relative phase permeability (RPP) has been developed, which minimizes the error in the approximating the phase filtration rates for the superelement modeling of waterflooding a layered heterogeneous oil reservoir. The RPP is locally upscaled for each superelement based on the solution of two-dimensional two-phase filtration problems on a refined computational grid. Modified RPP functions (MFRPPs) are represented in the parametric form; i.e., the values of the parameters are sought when solving the problem of minimizing the deviations of the averaged and approximated phase velocities at the sites corresponding to the faces of the superelement. The efficiency of applying MFRPP to superelement modeling is illustrated by an example of a model reservoir region where oil is extracted using injection and production wells and by an example of waterflooding at a real oilfield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Motion of Liquids and Gases in Natural Strata (Nedra, Moscow, 1984) [in Russian].

    Google Scholar 

  2. A. B. Mazo and D. V. Bulygin, “Super elements: new approach towards oil field development modeling,” Neft. Gaz. Novatsii, No. 11, 6–8 (2011).

    Google Scholar 

  3. A. B. Mazo, K. A. Potashev, E. I. Kalinin, and D. V. Bulygin, “Oil reservoir simulation with the superelement method,” Mat. Model. 25 (8), 51–64 (2013).

    MathSciNet  MATH  Google Scholar 

  4. A. Mazo, K. Potashev, and E. Kalinin, “Petroleum reservoir simulation using Super Element Method,” Proc. Earth Planet. Sci. 15, 482–487 (2015).

    Article  Google Scholar 

  5. L. G. Strakhovskaya and R. P. Fedorenko, “A version of the finite element method,” USSR Comput. Math. Math. Phys. 19, 162–173 (1979). 90164-2 doi 10.1016/ 0041-5553(79)

    Article  MATH  Google Scholar 

  6. Z. I. Burman, O. M. Aksenov, V. I. Lukashenko, and M. T. Timofeev, Superelement Calculation of Stiffened Shells (Mashinostroenie, Moscow, 1982) [in Russian].

    Google Scholar 

  7. The Method of Superelements in Calculations of Engineering Structures, Ed. by V. A. Postnov (Sudostroenie, Leningrad, 1979) [in Russian].

  8. A. V. Akhmetzyanov and V. N. Kulibanov, “Nontraditional mathematical models of fluid filtration on porous media,” Autom. Remote Control 65, 1177–1188 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. Efendiev, V. Ginting, T. Hou, and R. Ewing, “Accurate multiscale finite element methods for two-phase flow simulations,” J. Comput. Phys. 220, 155–174 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Kh. Pergament, V. A. Semiletov, and P. Yu. Tomin, “On some multiscale algorithms for sector modeling in multiphase flow in porous media,” Math. Models Comput. Simul. 3, 365–374 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  11. X. H. Wu, Y. Efendiev, and T. Y. Hou, “Analysis of upscaling absolute permeability,” Discrete Continuous Dyn. Syst., Ser. B 2, 185–204 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  12. L. J. Durlofsky, “Coarse scale models of two phase flow in heterogeneous reservoirs: volume averaged equations and their relationship to existing upscaling techniques,” Comput. Geosci. 2, 73–92 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Dykstra and R. Parsons, “The prediction of oil recovery by waterflooding,” in Secondary Oil Recovery of Oil in the United States, 2nd ed. (API, 1950), pp. 160–174.

    Google Scholar 

  14. D. V. Bulygin and V. Ya. Bulygin, Geology and Development Imitation of Oil Reservoirs (Nedra, Moscow, 1996) [in Russian].

    Google Scholar 

  15. A. K. Kurbanov, “On some generalization of equations of two-phase liquid filtering,” Nauch.-Tekh. Sb. VNII 15, 32–38 (1961).

    Google Scholar 

  16. K. H. Coats, J. R. Dempsey, and J. H. Henderson, “The use of vertical equilibrium in two-dimensional simulation of three-dimensional reservoir performance,” Soc. Pet. Eng. J. 11, 63–71 (1971).

    Article  Google Scholar 

  17. C. L. Hearn, “Simulation of stratified waterflooding by pseudo relative permeability curves,” J. Pet. Technol. 23, 805–813 (1971).

    Article  Google Scholar 

  18. G. E. Pickup, P. S. Ringrose, and A. Sharif, “Steady-state upscaling: from lamina-scale to full-field model,” Soc. Pet. Eng. J. 5, 208–217 (2000).

    Google Scholar 

  19. S. Ekrann and J. O. Aasen, “Steady-state upscaling,” Transport Porous Media 41, 245–262 (2000).

    Article  Google Scholar 

  20. S. E. Gasda and M. A. Celia, “Upscaling relative permeabilities in a structured porous medium,” Adv. Water Res. 28, 493–506 (2005).

    Article  Google Scholar 

  21. H. H. Jacks, O. J. E. Smith, and C. C. Mattax, “The modelling of a three-dimensional reservoir with a twodimensional reservoir simulator- the use of dynamic pseudo functions,” Soc. Pet. Eng. J. 13, 175–185 (1973).

    Article  Google Scholar 

  22. J. R. Kyte and D. W. Berry, “New pseudofunctions to control numerical dispersion,” Soc. Pet. Eng. J. 15, 269–276 (1975).

    Article  Google Scholar 

  23. J. W. Barker and F. J. Fayers, “Transport coefficients for compositional simulation with coarse grids in heterogeneous media,” Soc. Pet. Eng. Adv. Technol. Ser. 2, 103–112 (1994).

    Article  Google Scholar 

  24. S. P. Rodionov and L. N. Orekhova, “Determination of modified relative permeabilities at transformation of the geological model to the hydrodynamic one. Part 1,” Neft Gaz, No. 6, 12–17 (2008).

    Google Scholar 

  25. R. Eymard, T. Gallouet, and R. Herbin, in Finite Volume Methods, Handbook of Numerical Analysis, Ed. by Ph. Ciarlet and J. L. Lions (North Holland, Amsterdam, 2000), pp. 713–1020.

    MATH  Google Scholar 

  26. T. A. Hewett and T. Yamada, “Theory for the semi-analytical calculation of oil recovery and effective relative permeabilities using streamtubes,” Adv. Water Res. 20, 279–292 (1997).

    Article  Google Scholar 

  27. X. H. Wen, L. J. Durlofsky, and M. G. Edwards, “Upscaling of channel systems in two dimensions using flowbased grids,” Transport Porous Media 51, 343–366 (2003).

    Article  Google Scholar 

  28. A. H. Zarifi, E. Sahraei, and H. Parvizi, “Pseudo relative permeability compensation for numerical dispersion,” Pet. Sci. Technol. 30, 1529–1538 (2012).

    Article  Google Scholar 

  29. K. A. Potashev, “Upscaling of relative phase permeabilities in an isolated stratified reservoir,” Uch. Zap. Kazan. Univ., Fiz.-Mat. Nauki 156, 120–134 (2014).

    MathSciNet  MATH  Google Scholar 

  30. J. Kozeny, Über kapillare Leitung des Wassers im Boden: Aufstieg, Versickerung und Anwendung auf die Bewaesserung (Sitzungsber. Akad. Wissensch., Wien, 1927), Vol. 136, pp. 271–306.

    Google Scholar 

  31. H. Daigle and B. Dugan, “Extending NMR data for permeability estimation in fine-grained sediments,” Marine Pet. Geol. 26, 1419–1427 (2009).

    Article  Google Scholar 

  32. Y. Yang and A. C. Aplin, “Permeability and petrophysical properties of 30 natural mudstones,” J. Geophys. Res. B: Solid Earth 112 (3), 1–14 (2007).

    Google Scholar 

  33. M. A. Christie and P. J. Clifford, “A fast procedure for upscaling in compositional simulation,” Soc. Pet. Eng. J. 3, 272–278 (1998).

    Google Scholar 

  34. P. Dupouy, J. W. Barker, and J.-P. Valois, “Grouping pseudo relative permeability curves,” In Situ 22, 1–33 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Potashev.

Additional information

Original Russian Text © A.B. Mazo, K.A. Potashev, 2017, published in Matematicheskoe Modelirovanie, 2017, Vol. 29, No. 3, pp. 81–94.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazo, A.B., Potashev, K.A. Upscaling relative phase permeability for superelement modeling of petroleum reservoir engineering. Math Models Comput Simul 9, 570–579 (2017). https://doi.org/10.1134/S207004821705009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207004821705009X

Keywords

Navigation